Pregled bibliografske jedinice broj: 1208583
Comparison of Machine Learning Algorithms for Students Performance Prediction Based on LMS Data
Comparison of Machine Learning Algorithms for Students Performance Prediction Based on LMS Data // Proceedings of the Tenth International Conference on e-Learning / Trebinjac, B. ; Jovanović, S. (ur.).
Beograd: Belgrade Metropolitan University, 2019. str. 70-73 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1208583 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparison of Machine Learning Algorithms for
Students Performance Prediction Based on LMS Data
Autori
Oreški, Dijana ; Kliček, Božidar
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Tenth International Conference on e-Learning
/ Trebinjac, B. ; Jovanović, S. - Beograd : Belgrade Metropolitan University, 2019, 70-73
Skup
10th International Conference on e-Learning
Mjesto i datum
Beograd, Srbija, 26.09.2019. - 27.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
LMS data ; data mining ; CRISP DM ; neural networks
Sažetak
Huge volumes of data created by students` activities on learning management systems (LMS) urged an opportunity to extract meaningful information from data. Development of data mining field yielded algorithms making possible to analyse data with the aim to improve quality of the educational processes. In this paper, we are comparing four data mining methods based on different machine learning algorithms to predict academic performance of IT students based on data about their activities at the LMS. Aim of the research were twofold: (i) to predict students' academic achievement and identify most important predictors of academic success, (ii) to compare different machine learning algorithms and identify which fits the best on LMS data. Research results indicated frequency of students` discussions as the most important predictor of success. Neural networks provided most accurate and reliable model.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin