Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1207402

Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review


Benčević, Marin; Galić, Irena; Habijan, Marija; Pižurica, Aleksandra
Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review // Applied Sciences, 12 (2022), 10; 5217-5243 doi:10.3390/app12105217 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1207402 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review

Autori
Benčević, Marin ; Galić, Irena ; Habijan, Marija ; Pižurica, Aleksandra

Izvornik
Applied Sciences (2076-3417) 12 (2022), 10; 5217-5243

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
epicardial adipose tissue ; medical imaging ; pericardial adipose tissue ; segmentation ; quantification

Sažetak
Epicardial and pericardial adipose tissues (EAT and PAT), which are located around the heart, have been linked to coronary atherosclerosis, cardiomyopathy, coronary artery disease, and other cardiovascular diseases. Additionally, the volume and thickness of EAT are good predictors of CVD risk levels. Manual quantification of these tissues is a tedious and error-prone process. This paper presents a comprehensive and critical overview of research on the epicardial and pericardial adipose tissue segmentation and quantification methods, evaluates their effectiveness in terms of segmentation time and accuracy, provides a critical comparison of the methods, and presents ongoing and future challenges in the field. Described methods are classified into pericardial adipose tissue segmentation, direct epicardial adipose tissue segmentation, and epicardial adipose tissue segmentation via pericardium delineation. A comprehensive categorization of the underlying methods is conducted with insights into their evolution from traditional image processing methods to recent deep learning-based methods. The paper also provides an overview of the research on the clinical significance of epicardial and pericardial adipose tissues as well as the terminology and definitions used in the medical literature.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Irena Galić (autor)

Avatar Url Marija Habijan (autor)

Avatar Url Marin Benčević (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Benčević, Marin; Galić, Irena; Habijan, Marija; Pižurica, Aleksandra
Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review // Applied Sciences, 12 (2022), 10; 5217-5243 doi:10.3390/app12105217 (međunarodna recenzija, članak, znanstveni)
Benčević, M., Galić, I., Habijan, M. & Pižurica, A. (2022) Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review. Applied Sciences, 12 (10), 5217-5243 doi:10.3390/app12105217.
@article{article, author = {Ben\v{c}evi\'{c}, Marin and Gali\'{c}, Irena and Habijan, Marija and Pi\v{z}urica, Aleksandra}, year = {2022}, pages = {5217-5243}, DOI = {10.3390/app12105217}, keywords = {epicardial adipose tissue, medical imaging, pericardial adipose tissue, segmentation, quantification}, journal = {Applied Sciences}, doi = {10.3390/app12105217}, volume = {12}, number = {10}, issn = {2076-3417}, title = {Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review}, keyword = {epicardial adipose tissue, medical imaging, pericardial adipose tissue, segmentation, quantification} }
@article{article, author = {Ben\v{c}evi\'{c}, Marin and Gali\'{c}, Irena and Habijan, Marija and Pi\v{z}urica, Aleksandra}, year = {2022}, pages = {5217-5243}, DOI = {10.3390/app12105217}, keywords = {epicardial adipose tissue, medical imaging, pericardial adipose tissue, segmentation, quantification}, journal = {Applied Sciences}, doi = {10.3390/app12105217}, volume = {12}, number = {10}, issn = {2076-3417}, title = {Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review}, keyword = {epicardial adipose tissue, medical imaging, pericardial adipose tissue, segmentation, quantification} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font