Pregled bibliografske jedinice broj: 1207081
Explainable Artificial Intelligence: An Updated Perspective
Explainable Artificial Intelligence: An Updated Perspective // 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)
Opatija, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 859-864 doi:10.23919/mipro55190.2022.9803681 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1207081 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Explainable Artificial Intelligence: An Updated Perspective
Autori
Krajna, Agneza ; Kovac, Mihael ; Brcic, Mario ; Sarcevic, Ana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2022, 859-864
Skup
45th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2022)
Mjesto i datum
Opatija, Hrvatska, 23.05.2022. - 27.05.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
artificial intelligence , explainability , interpretability , AI safety , graph neural networks
Sažetak
Artificial intelligence has become mainstream and its applications will only proliferate. Specific measures must be done to integrate such systems into society for the general benefit. One of the tools for improving that is explainability which boosts trust and understanding of decisions between humans and machines. This research offers an update on the current state of explainable AI (XAI). Recent XAI surveys in supervised learning show convergence of main conceptual ideas. We list the applications of XAI in the real world with concrete impact. The list is short and we call to action - to validate all the hard work done in the field with applications that go beyond experiments on datasets, but drive decisions and changes. We identify new frontiers of research, explainability of reinforcement learning and graph neural networks. For the latter, we give a detailed overview of the field.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo