Pregled bibliografske jedinice broj: 1206759
Grip force prediction based on changes in Brachioradialis Muscle Impedance
Grip force prediction based on changes in Brachioradialis Muscle Impedance // Proceedings of the 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) / Gu, Changzhan (ur.).
Piscataway (NJ): Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 274-276 doi:10.1109/IMBioC52515.2022.9790132 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1206759 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Grip force prediction based on changes in
Brachioradialis Muscle Impedance
Autori
Xu, Pan ; Yang, Xudong ; Yan , Hongli ; Lučev Vasić, Željka ; Cifrek, Mario ; Gao, Yueming
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)
/ Gu, Changzhan - Piscataway (NJ) : Institute of Electrical and Electronics Engineers (IEEE), 2022, 274-276
Skup
IEEE International Microwave Biomedical Conference (IMBioC 2022)
Mjesto i datum
Suzhou, Kina, 16.05.2022. - 18.05.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
grip force prediction ; impedance technique ; long short-term memory ; brachioradialis muscle
Sažetak
Grip force prediction plays an important role in biomechanical research, sports medicine, and clinical rehabilita- tion. Most of the current studies in this area only focuses on the characteristic input of surface Electromyography (sEMG) signals, but the acquisition and processing of sEMG are complicated and vulnerable to electromagnetic interference. The impedance signal has the advantages of easy acquisition and processing, strong anti-interference, non-invasive detection, and are widely used in the treatment of neuromuscular diseases. In this paper, impedance technique is introduced into grip force prediction. A single-frequency, low-intensity alternating current (AC) signal is injected into the brachioradialis muscle, and the change in muscle impedance is detected through the electrical effect of the electromagnetic field on biological tissue. Then, the correlation between impedance parameters and grip force changes is dis- cussed, and the Long Short-Term Memory (LSTM) grip force prediction model is established with resistance (R) and phase (P) as feature inputs. The results show that the r 2 score of the grip force prediction model is greater than 0.94 and the mean square error (MSE) is lower than 0.7. This paper restores the actual grip force based on the LSTM prediction model and provides a new implementation idea for grip force prediction.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb