Pregled bibliografske jedinice broj: 1206340
Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis
Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis // Environmental modelling & software, 155 (2022), 105458, 14 doi:10.1016/j.envsoft.2022.105458 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1206340 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Coastal water quality prediction based on machine
learning with feature interpretation and spatio-
temporal analysis
Autori
Grbčić, Luka ; Družeta, Siniša ; Mauša, Goran ; Lipić, Tomislav ; Vukić Lušić, Darija ; Alvir, Marta ; Lučin, Ivana ; Sikirica, Ante ; Davidović, Davor ; Travaš, Vanja ; Kalafatović, Daniela ; Pikelj, Kristina ; Fajković, Hana ; Holjević, Toni ; Kranjčević, Lado
Izvornik
Environmental modelling & software (1364-8152) 155
(2022);
105458, 14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
coastal water quality ; machine learning ; shap ; catboost ; fecal indicator bacteria
Sažetak
Coastal water quality management is a public health concern, as water of poor quality can potentially harbor dangerous pathogens. In this study, we employ routine monitoring data of Escherichia Coli and enterococci across 15 beaches in the city of Rijeka, Croatia, to build machine learning models for predicting E. Coli and enterococci based on environmental features. Cross-validation analysis showed that the Catboost algorithm performed best with R values of 0.71 and 0.69 for predicting E. Coli and enterococci, respectively, compared to other evaluated algorithms. SHapley Additive exPlanations technique showed that salinity is the most important feature for forecasting both E. Coli and enterococci levels. Furthermore, for low water quality sites, the spatial predictive models achieved R values of 0.85 and 0.83, while the temporal models achieved R values of 0.74 and 0.67. The temporal model achieved moderate R^2 values of 0.44 and 0.46 at a site with high water quality.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Projekti:
EK-EFRR-KK.05.1.1.02.0017 - Računalni model strujanja, poplavljivanja i širenja onečišćenja u rijekama i obalnim morskim područjima (KLIMOD) (Kranjčević, Lado; Vukić Lušić, Darija; Davidović, Davor, EK - KK.05.1.1.02) ( CroRIS)
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Institut "Ruđer Bošković", Zagreb,
Građevinski fakultet, Rijeka,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Rijeci,
Sveučilište u Rijeci - Odjel za biotehnologiju
Profili:
Siniša Družeta
(autor)
Tomislav Lipić
(autor)
Marta Alvir
(autor)
Hana Fajković
(autor)
Ante Sikirica
(autor)
Luka Grbčić
(autor)
Kristina Pikelj
(autor)
Darija Vukić Lušić
(autor)
Vanja Travaš
(autor)
Davor Davidović
(autor)
Goran Mauša
(autor)
Lado Kranjčević
(autor)
Ivana Lučin
(autor)
Daniela Kalafatović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus