Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1206340

Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis


Grbčić, Luka; Družeta, Siniša; Mauša, Goran; Lipić, Tomislav; Vukić Lušić, Darija; Alvir, Marta; Lučin, Ivana; Sikirica, Ante; Davidović, Davor; Travaš, Vanja et al.
Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis // Environmental modelling & software, 155 (2022), 105458, 14 doi:10.1016/j.envsoft.2022.105458 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1206340 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis

Autori
Grbčić, Luka ; Družeta, Siniša ; Mauša, Goran ; Lipić, Tomislav ; Vukić Lušić, Darija ; Alvir, Marta ; Lučin, Ivana ; Sikirica, Ante ; Davidović, Davor ; Travaš, Vanja ; Kalafatović, Daniela ; Pikelj, Kristina ; Fajković, Hana ; Holjević, Toni ; Kranjčević, Lado

Izvornik
Environmental modelling & software (1364-8152) 155 (2022); 105458, 14

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
coastal water quality ; machine learning ; shap ; catboost ; fecal indicator bacteria

Sažetak
Coastal water quality management is a public health concern, as water of poor quality can potentially harbor dangerous pathogens. In this study, we employ routine monitoring data of Escherichia Coli and enterococci across 15 beaches in the city of Rijeka, Croatia, to build machine learning models for predicting E. Coli and enterococci based on environmental features. Cross-validation analysis showed that the Catboost algorithm performed best with R values of 0.71 and 0.69 for predicting E. Coli and enterococci, respectively, compared to other evaluated algorithms. SHapley Additive exPlanations technique showed that salinity is the most important feature for forecasting both E. Coli and enterococci levels. Furthermore, for low water quality sites, the spatial predictive models achieved R values of 0.85 and 0.83, while the temporal models achieved R values of 0.74 and 0.67. The temporal model achieved moderate R^2 values of 0.44 and 0.46 at a site with high water quality.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Projekti:
EK-EFRR-KK.05.1.1.02.0017 - Računalni model strujanja, poplavljivanja i širenja onečišćenja u rijekama i obalnim morskim područjima (KLIMOD) (Kranjčević, Lado; Vukić Lušić, Darija; Davidović, Davor, EK - KK.05.1.1.02) ( CroRIS)

Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Institut "Ruđer Bošković", Zagreb,
Građevinski fakultet, Rijeka,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Rijeci,
Sveučilište u Rijeci - Odjel za biotehnologiju

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Grbčić, Luka; Družeta, Siniša; Mauša, Goran; Lipić, Tomislav; Vukić Lušić, Darija; Alvir, Marta; Lučin, Ivana; Sikirica, Ante; Davidović, Davor; Travaš, Vanja et al.
Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis // Environmental modelling & software, 155 (2022), 105458, 14 doi:10.1016/j.envsoft.2022.105458 (međunarodna recenzija, članak, znanstveni)
Grbčić, L., Družeta, S., Mauša, G., Lipić, T., Vukić Lušić, D., Alvir, M., Lučin, I., Sikirica, A., Davidović, D. & Travaš, V. (2022) Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis. Environmental modelling & software, 155, 105458, 14 doi:10.1016/j.envsoft.2022.105458.
@article{article, author = {Grb\v{c}i\'{c}, Luka and Dru\v{z}eta, Sini\v{s}a and Mau\v{s}a, Goran and Lipi\'{c}, Tomislav and Vuki\'{c} Lu\v{s}i\'{c}, Darija and Alvir, Marta and Lu\v{c}in, Ivana and Sikirica, Ante and Davidovi\'{c}, Davor and Trava\v{s}, Vanja and Kalafatovi\'{c}, Daniela and Pikelj, Kristina and Fajkovi\'{c}, Hana and Holjevi\'{c}, Toni and Kranj\v{c}evi\'{c}, Lado}, year = {2022}, pages = {14}, DOI = {10.1016/j.envsoft.2022.105458}, chapter = {105458}, keywords = {coastal water quality, machine learning, shap, catboost, fecal indicator bacteria}, journal = {Environmental modelling and software}, doi = {10.1016/j.envsoft.2022.105458}, volume = {155}, issn = {1364-8152}, title = {Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis}, keyword = {coastal water quality, machine learning, shap, catboost, fecal indicator bacteria}, chapternumber = {105458} }
@article{article, author = {Grb\v{c}i\'{c}, Luka and Dru\v{z}eta, Sini\v{s}a and Mau\v{s}a, Goran and Lipi\'{c}, Tomislav and Vuki\'{c} Lu\v{s}i\'{c}, Darija and Alvir, Marta and Lu\v{c}in, Ivana and Sikirica, Ante and Davidovi\'{c}, Davor and Trava\v{s}, Vanja and Kalafatovi\'{c}, Daniela and Pikelj, Kristina and Fajkovi\'{c}, Hana and Holjevi\'{c}, Toni and Kranj\v{c}evi\'{c}, Lado}, year = {2022}, pages = {14}, DOI = {10.1016/j.envsoft.2022.105458}, chapter = {105458}, keywords = {coastal water quality, machine learning, shap, catboost, fecal indicator bacteria}, journal = {Environmental modelling and software}, doi = {10.1016/j.envsoft.2022.105458}, volume = {155}, issn = {1364-8152}, title = {Coastal water quality prediction based on machine learning with feature interpretation and spatio- temporal analysis}, keyword = {coastal water quality, machine learning, shap, catboost, fecal indicator bacteria}, chapternumber = {105458} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font