Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1205407

A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images


Milošević, Denis; Vodanović, Marin; Galić, Ivan; Subašić, Marko
A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images // IEEE Access, 10 (2022), 70980-71002 doi:10.1109/access.2022.3187959 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1205407 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images

Autori
Milošević, Denis ; Vodanović, Marin ; Galić, Ivan ; Subašić, Marko

Izvornik
IEEE Access (2169-3536) 10 (2022); 70980-71002

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
age estimation ; sex assessment ; tooth type determination ; tooth numbering ; convolutional neural network ; deep learning ; forensic odontology ; dental x-ray ; image processing ; medical image analysis

Sažetak
Determining the demographic characteristics of a person post-mortem is a fundamental task for forensic experts, and the dental system is a crucial source of those information. Those characteristics, namely age and sex, can reliably be determined. The mandible and individual teeth survive even the harshest conditions, making them a prime target for forensic analysis. Current methods in forensic odontology rely on time- consuming manual measurements and reference tables, many of which rely on the correct determination of the tooth type. This study thoroughly explores the applicability of deep learning for sex assessment, age estimation, and tooth type determination from x-ray images of individual teeth. A series of models that use state-of-the-art feature extraction architectures and attention have been trained and evaluated. Their hyperparameters have been explored and optimized using a combination of grid and random search, totaling over a thousand experiments and 14076 hours of GPU compute time. Our dataset contains 86495 individual tooth x-ray image samples, with a subset of 7630 images having additional information about tooth alterations. The best-performing models are fine-tuned, the impact of tooth alterations is analyzed, and model performance is compared to current methods in forensic odontology literature. We achieve an accuracy of 76.41% for sex assessment, a median absolute error of 4.94 years for age estimation, and an accuracy of 87.24% to 99.15% for tooth type determination. The constructed models are fully automated and fast, their results are reproducible, and the performance is equal to or better than current state-of-the-art methods in forensic odontology.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Dentalna medicina



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-9423 - Analiza zuba u forenzičnim i arheološkim istraživanjima (AZUFAMA) (Brkić, Hrvoje, HRZZ - 2020-02) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Stomatološki fakultet, Zagreb,
Medicinski fakultet, Split

Profili:

Avatar Url Marin Vodanović (autor)

Avatar Url Denis Milošević (autor)

Avatar Url Marko Subašić (autor)

Avatar Url Ivan Galić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Milošević, Denis; Vodanović, Marin; Galić, Ivan; Subašić, Marko
A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images // IEEE Access, 10 (2022), 70980-71002 doi:10.1109/access.2022.3187959 (međunarodna recenzija, članak, znanstveni)
Milošević, D., Vodanović, M., Galić, I. & Subašić, M. (2022) A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images. IEEE Access, 10, 70980-71002 doi:10.1109/access.2022.3187959.
@article{article, author = {Milo\v{s}evi\'{c}, Denis and Vodanovi\'{c}, Marin and Gali\'{c}, Ivan and Suba\v{s}i\'{c}, Marko}, year = {2022}, pages = {70980-71002}, DOI = {10.1109/access.2022.3187959}, keywords = {age estimation, sex assessment, tooth type determination, tooth numbering, convolutional neural network, deep learning, forensic odontology, dental x-ray, image processing, medical image analysis}, journal = {IEEE Access}, doi = {10.1109/access.2022.3187959}, volume = {10}, issn = {2169-3536}, title = {A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images}, keyword = {age estimation, sex assessment, tooth type determination, tooth numbering, convolutional neural network, deep learning, forensic odontology, dental x-ray, image processing, medical image analysis} }
@article{article, author = {Milo\v{s}evi\'{c}, Denis and Vodanovi\'{c}, Marin and Gali\'{c}, Ivan and Suba\v{s}i\'{c}, Marko}, year = {2022}, pages = {70980-71002}, DOI = {10.1109/access.2022.3187959}, keywords = {age estimation, sex assessment, tooth type determination, tooth numbering, convolutional neural network, deep learning, forensic odontology, dental x-ray, image processing, medical image analysis}, journal = {IEEE Access}, doi = {10.1109/access.2022.3187959}, volume = {10}, issn = {2169-3536}, title = {A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images}, keyword = {age estimation, sex assessment, tooth type determination, tooth numbering, convolutional neural network, deep learning, forensic odontology, dental x-ray, image processing, medical image analysis} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font