Pregled bibliografske jedinice broj: 1203723
NOTE ON HAMILTONIAN GRAPHS IN ABELIAN 2-GROUPS
NOTE ON HAMILTONIAN GRAPHS IN ABELIAN 2-GROUPS // Kragujevac journal of mathematics, 49 (2022), 3; 401-409 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1203723 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
NOTE ON HAMILTONIAN GRAPHS IN ABELIAN 2-GROUPS
Autori
Kristijan Tabak
Izvornik
Kragujevac journal of mathematics (1450-9628) 49
(2022), 3;
401-409
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Hamiltonian graph ; graph ; elementary Abelian group ; subgroup ; group ring
Sažetak
We analyze a graph $G$ whose vertices are subgroups of $\mathbb{;Z};_2^k$ isomorphic to $\mathbb{;Z};_2 \times \mathbb{;Z};_2.$ Two vertices are joined if their respective subgroups have nontrivial intersection. We prove that such a graph is $6(2^{;k-2};-1)$-regular. If a graph is regular, a classical theorem by Ore claims that a graph is Hamiltonian if the degree of any vertex is at least one half of the number of vertices. Using Ore's theorem, we show that $G$ is Hamiltonian for $k \in \{;3, 4\};.$ Ore's theorem cannot be applied when $k \geq 5$ . Nevertheless, we manage to construct a Hamiltonian cycle for $k=5.$ Our construction uses orbits of one $\mathbb{;Z};_2^4$ group under an action of an automorphism of order $31.$ It is highly likely that this approach could be generalized for $k>5.$
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-6732 - Kombinatorički objekti i kodovi (COCo) (Crnković, Dean, HRZZ ) ( CroRIS)
HRZZ-IP-2020-02-9752 - Algoritamske konstrukcije kombinatornih objekata (ACCO) (Krčadinac, Vedran, HRZZ - 2020-02) ( CroRIS)
Ustanove:
RIT Croatia, Dubrovnik
Profili:
Kristijan Tabak (autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus
Uključenost u ostale bibliografske baze podataka::
- EBSCO
- Google Scholar