Pregled bibliografske jedinice broj: 1202638
Self-orthogonal Z_{;2^k};-codes constructed from Boolean functions
Self-orthogonal Z_{;2^k};-codes constructed from Boolean functions // Sedmi hrvatski matematički kongres
Split, Hrvatska, 2022. str. 1-1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1202638 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Self-orthogonal Z_{;2^k};-codes constructed from
Boolean functions
Autori
Ban, Sara ; Rukavina, Sanja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Sedmi hrvatski matematički kongres
Mjesto i datum
Split, Hrvatska, 15.06.2022. - 18.06.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Boolean function, Type II binary code, Z4-code, self-orthogonal Z_{;2^k};-code
Sažetak
The subject of this talk is a construction of self-orthogonal codes over Z_{;2^k}; from Boolean functions. First, we give a construction of a self-orthogonal Z4-code of length 2^{;n+1}; from a pair of bent functions on n variables. We prove that for n ≥ 4 those codes can be extended to Type IV-II Z4- codes. From that family of Type IV-II Z4-codes, we construct a family of self-dual Type II binary codes by using the Gray map. We construct a self-orthogonal Z_{;2^k};-code of length 2^{;n+1}; with all Euclidean weights divisible by 2^{;k+2}; from a pair of bent functions on n variables, for every k ≥ 3. Moreover, we give a construction of a self- orthogonal Z_{;2^k};-code of length 2^{;n+2}; with all Euclidean weights divisible by 2^{;k+1}; from a pair of Boolean functions on n variables, for every 3 ≤ k ≤ n.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-6732 - Kombinatorički objekti i kodovi (COCo) (Crnković, Dean, HRZZ ) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-prirod-18-45 - Dizajni, grafovi i linearni kodovi (Rukavina, Sanja, NadSve - UNIRI PROJEKTI 2018) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku