Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1200244

Autoencoder-based training for multi-illuminant color constancy


Vršnak, Donik; Domislović, Ilija; Subašić, Marko; Lončarić, Sven
Autoencoder-based training for multi-illuminant color constancy // Journal of the Optical Society of America. A, Optics, image science, and vision., 39 (2022), 6; 1076-1084 doi:10.1364/josaa.457751 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1200244 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Autoencoder-based training for multi-illuminant color constancy

Autori
Vršnak, Donik ; Domislović, Ilija ; Subašić, Marko ; Lončarić, Sven

Izvornik
Journal of the Optical Society of America. A, Optics, image science, and vision. (1084-7529) 39 (2022), 6; 1076-1084

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Color Constancy ; Illumination Estimation ; Segmentation ; Multi Illuminant

Sažetak
Color constancy is an essential component of the human visual system. It enables us to discern the color of objects invariant to the illumination that is present. This ability is difficult to reproduce in software, as the underlying problem is ill posed, i.e., for each pixel in the image, we know only the RGB values, which are a product of the spectral characteristics of the illumination and the reflectance of objects, as well as the sensitivity of the sensor. To combat this, additional assumptions about the scene have to be made. These assumptions can be either handcrafted or learned using some deep learning technique. Nonetheless, they mostly work only for single illuminant images. In this work, we propose a method for learning these assumptions for multi-illuminant scenes using an autoencoder trained to reconstruct the original image by splitting it into its illumination and reflectance components. We then show that the estimation can be used as is or can be used alongside a clustering method to create a segmentation map of illuminations. We show that our method performs the best out of all tested methods in multi-illuminant scenes while being completely invariant to the number of illuminants.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi opg.optica.org

Citiraj ovu publikaciju:

Vršnak, Donik; Domislović, Ilija; Subašić, Marko; Lončarić, Sven
Autoencoder-based training for multi-illuminant color constancy // Journal of the Optical Society of America. A, Optics, image science, and vision., 39 (2022), 6; 1076-1084 doi:10.1364/josaa.457751 (međunarodna recenzija, članak, znanstveni)
Vršnak, D., Domislović, I., Subašić, M. & Lončarić, S. (2022) Autoencoder-based training for multi-illuminant color constancy. Journal of the Optical Society of America. A, Optics, image science, and vision., 39 (6), 1076-1084 doi:10.1364/josaa.457751.
@article{article, author = {Vr\v{s}nak, Donik and Domislovi\'{c}, Ilija and Suba\v{s}i\'{c}, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2022}, pages = {1076-1084}, DOI = {10.1364/josaa.457751}, keywords = {Color Constancy, Illumination Estimation, Segmentation, Multi Illuminant}, journal = {Journal of the Optical Society of America. A, Optics, image science, and vision.}, doi = {10.1364/josaa.457751}, volume = {39}, number = {6}, issn = {1084-7529}, title = {Autoencoder-based training for multi-illuminant color constancy}, keyword = {Color Constancy, Illumination Estimation, Segmentation, Multi Illuminant} }
@article{article, author = {Vr\v{s}nak, Donik and Domislovi\'{c}, Ilija and Suba\v{s}i\'{c}, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2022}, pages = {1076-1084}, DOI = {10.1364/josaa.457751}, keywords = {Color Constancy, Illumination Estimation, Segmentation, Multi Illuminant}, journal = {Journal of the Optical Society of America. A, Optics, image science, and vision.}, doi = {10.1364/josaa.457751}, volume = {39}, number = {6}, issn = {1084-7529}, title = {Autoencoder-based training for multi-illuminant color constancy}, keyword = {Color Constancy, Illumination Estimation, Segmentation, Multi Illuminant} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font