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Dr. sc. Sven Lončarić je redoviti profesor u trajnom zvanju na Fakultetu elektrotehnike i raču-

narstva na Sveučilištu u Zagrebu. Diplomirao je i magistrirao na Elektrotehničkom fakultetu
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Abstract

Components of many systems, structures, and buildings, require constant monitoring and in-

spections because of possible defect occurrences due to constant usage and material stress. To

inspect the material and prevent component failure, a wide range of non-destructive evaluation

(NDE) techniques can be applied. Ultrasonic testing (UT) is one of the NDE techniques that is

commonly used today due to its many advantages. UT is quite simple to employ since only one-

sided access to the material is needed, and the internal structure of a material can be inspected

with the ability to precisely localize defects within the inspected component. Acquisition of

UT data is nowadays mostly performed in an automated fashion, using the robotic manipulator.

The manipulator moves the ultrasonic transducer along the surface of the material. At each

position, the ultrasonic probe (transducer) transmits and receives ultrasonic waves. In case of

a defect presence, a fraction of the transmitted waves will bounce off the defect back to the

probe, and by analyzing the received signal it is possible to precisely determine the defect's

position and size. The analysis of the acquired data is currently done manually, making the

process heavily reliant on the personnel's previous experience and knowledge. Manual analy-

sis of the data can lead to error, especially when a large amount of data needs to be inspected

and the repetitive work leads to fatigue of the inspectors. To overcome these problems, many

researchers have proposed methods for the automated analysis of UT data. The main problem

with the automated analysis is the irregularity of the acquired data, which makes it impossible

to write an algorithmic description of the analysis process as done by the human inspector. In

recent years, deep learning-based approaches emerged as one of the promising directions in the

development of automated UT data analysis solutions. Deep learning approaches can implicitly

learn the important features from the large datasets of labeled data. While in some cases it is

possible to apply existing deep learning architectures for the analysis of UT data, some domain-

speci�c challenges occur and limit the performance of such methods. For example, extreme

aspect ratios of the defects in ultrasonic images limit the precision that can be achieved by the

existing one-stage object detectors. Furthermore, when detecting a defect on an ultrasonic im-

age, it would be useful to use additional information available from the surrounding area but

a method that simultaneously processes several ultrasonic images was not yet proposed in the

literature. In this thesis, several solutions and novel architectures are proposed in order to solve

the aforementioned challenges. All of the proposed methods were tested on an in-house dataset

with over 4000 ultrasonic B-scans. Experimental results con�rm that the precision can be sig-

ni�cantly improved by developing a novel deep learning architecture speci�cally designed for

defect detection from ultrasound images.

Keywords: ultrasound image analysis, non-destructive evaluation, automated defect detec-

tion, object detection, data augmentation, image generation, deep learning



Prošireni sa�etak

Metode zasnovane na dubokom u�cenju za detekciju defekata iz ultrazvu�cnih slika

Nerazorno ispitivanje je skup tehnika koje se upotrebljavaju za inspekciju materijala ili di-

jela nekog sustava bez nanošenje štete ispitivanoj komponenti. Brojne takve tehnike su razvi-

jene tijekom godina i�cesto se koriste prilikom inspekcije elektrana, zrakoplova, cjevovoda i

sli�cnih konstrukcija gdje je nu�no na vrijeme detektirati defekte. Neke od metoda nerazornog

ispitivanja su metoda vrtlo�nih struja, vizualne metode, radijacijske metode, toplinske metode

te ultrazvu�cno testiranje. Nekada se koriste i kombinacije razli�citih metoda kako bi se povećala

pouzdanost inspekcije. Ultrazvu�cno testiranje (UT) isti�ce se mēdu nabrojanim metodama zbog

brojnih prednosti. Za po�cetak, dovoljan je pristup samo jednoj strani materijala, a metoda sve-

jedno daje uvid u internalnu strukturu i stanje materijala. Ultrazvu�cnim testiranjem se uglavnom

dobiju podaci s visokim omjerom signala i šuma što omogućuje preciznu lokalizaciju defekta

i odred̄ivanje njegovih dimenzija. Ultrazvu�cno testiranje bazira se na generiranju i detekciji

ultrazvu�cnih valova unutar testnog objekta. Ako je defekt prisutan u materijalu, njegova gus-

toća se razlikuje od okolnog podru�cja paće to uzrokovati odbijanje dijela ultrazvu�cnih valova.

Sondáce registrirati re�ektirane ultrazvu�cne valove te se iz informacija o svojstvima materijala

mo�e izra�cunati to�cna dubina na kojoj se defekt nalazi. Dio odaslanih ultrazvu�cnih valova se

takod̄er odbija od nepravilnosti u materijalu zbog�cega se pojavljuje šum. Kako bi se povećala

pouzdanost pronalaska defekta, prikupljanje ultrazvu�cnih podataka se danas uglavnom obavlja

korištenjem sondi s faznim poljima (engl. phased array). Sonde s faznim poljima istovremeno

odašilju ultrazvu�cne valove pod raznim kutovima (npr. od 45° do 79° s rezolucijom od 2°). Ko-

rištenjem ovog tipa sondi, smanjuje se vjerojatnost da se valovi neće odbiti od plosnatog defekta

postavljenog paralelno u odnosu na putanju ultrazvu�cnih valova. Problem je što se koli�cina po-

dataka povécava korištenjem ovog tipa sonde pa je za analizu ovakvih podataka potrebno puno

vremena. Prikupljeni ultrazvu�cni podaci se mogu prikazati u raznim formatima. Najjednos-

tavniji prikaz se zove A-sken i on pokazuje koli�cinu primljene energije kao funkciju vremena

(ili dubine). Jedan A-sken se dobije kada sonda generira i primi jedan ultrazvu�cni val. Kon-

tinuiranim pomicanjem sonde po površini materijala dobije se niz A-skenova. Niz A-skenova

uglavnom se prikazuje u obliku slike koja se zove B-sken. B-sken se dobije pretvorbom am-

plituda A-skena u vrijednosti piksela. Kako bi se ispitao cjelokupni volumen materijala, sonda

se pomakne u stranu svaki put se prikupi jedan B-sken. Na ovaj na�cin se tijekom inspekcije

prikupi niz B-skenova pri�cemu svaki B-sken odgovara odred̄enom presjeku materijala. Uz

spomenute, postoje i brojni drugi na�cini prikaza prikupljenih podataka (C-sken, S-sken, itd.),

ali ovi spomenuti su naj�ceš́ce korišteni. Inspektori ru�cno pregledavaju prikupljene podatke kako

bi utvrdili eventualnu prisutnost defekata u materijalu. Inspektori pritom istovremeno gledaju

u razne prikaze podataka kako bi potvrdili svoju odluku.�Cesto je za ispravnu odluku potrebno
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pogledati i okolna podru�cja oko sumnjive lokacije ili tu istu lokaciju pogledati pod drugim

kutom. Koli�cina podataka koja se prikupi tijekom stvarne inspekcije je ogromna zbog�cega je

analiza UT podataka jako zamorna i teška. Nadalje, većina slika uoṕce ne sadr�i defekte tako da

inspektori vécinu vremena provode gledajući u monotone podatke. Ovaj postupak je jako repet-

itivan i naporan za ljude pa zbog umora mo�e doći do pogreške u analizi podataka odnosno ne

primjećivanja defekta. Automatizirani sustav bi mogao ovaj zadatak izvoditi puno br�e, a do-

biveni rezultati bi bili konzistentni. Bilo bi dovoljno da takav sustav pronad̄e sumnjive dijelove

podataka, a ljudski inspektor bi zatim mogao pregledati taj manji izdvojeni dio i provesti daljnju

analizu po potrebi.

Puno truda je ulo�eno u razvoj metoda koje bi mogle asistirati inspektorima prilikom analize

UT podatka. Rani pokušaju se uglavnom oslanjaju na ekstrakciju zna�cajki valićnom transfor-

macijom i klasi�kacijom ekstrahiranih zna�cajki korištenjem strojnog u�cenja. Ovakvim pris-

tupom se za svaki A-sken utvrdi sadr�i li on signal defekta ili ne. Kao klasi�kator se naj�ceš́ce

koriste umjetne neuronske mre�e ili stroj potpornih vektora. Informacije iz A-skena se mogu

izvući i korištenjem drugih transformacija ili kombinacijom raznih transformacija. Neki autori

se za cjelokupni proces analize oslanjaju na nadzirano u�cenje korištenjem umjetnih neuronskih

mre�a. U tom slu�caju potrebno je imati dovoljno veliki skup podataka iz kojega model onda

mo�e implicitno nau�citi bitne zna�cajke i na temelju njih razlikovati defektne od normalnih A-

skenova. Za ovakav pristup posebno je popularna specijalna vrsta neuronske mre�e koja se zove

konvolucijska neuronska mre�a (engl. convolutional neural network). Konvolucijske neuronske

mre�e mogu direktno iz podataka nau�citi koje informacije su bitne pa se ne treba provoditi ru�cno

dizajnirana ekstrakcija zna�cajki. Konvolucijske neuronske mre�e su pogotovo e�kasne prilikom

analize jednodimenzionalnih ili dvodimenzionalnih struktura podataka kao što su sekvence ili

slike. Bez obzira na na�cin analize pojedinog A-skena,�cesto je teško provesti klasi�kaciju bez da

se u obzir uzmu i okolni A-skenovi. Glavi razlog je sli�cnost signala uzrokovanih geometrijom

komponente ili šumom i signala nastalog re�eksijom od defekta.

Zbog toga se osim metoda za analizu A-skenova, razvijaju i metode za analizu B-skenova.

Dugo vremena metode za analizu slika nisu bile dovoljno razvijene kako bi se uspješno de-

tektirali defekti na B-skenovima. Situacija se nedavno poboljšala razvojem raznih arhitektura

dubokih neuronskih mre�a, te procedura korištenih za njihovo treniranje. Postoji mnogo javno

dostupnih skupova slika na kojima se testiraju generalne sposobnosti predlo�enih arhitektura za

razne zadatke kao što su klasi�kacija slike, detekcija i praćenje objekata na slikama, semanti�cka

segmentacija, itd. Tijekom godina se poboljšala e�kasnost predlo�enih arhitektura te je mnogim

predlo�enim tehnikama kao što su augmentacija podataka i prijenosno u�cenje, omogúcena prim-

jena postojécih modela u novim domenama. Posljedi�cno se povécao i broj radova koji duboke

neuronske mre�e upotrebljavaju za analizu B-scanova dobivenih ultrazvu�cnim testiranjem. Ako

je dostupan dovoljno veliki skup slika, za detekciju defekata mogu su primijeniti postojeći de-
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tektori koji se�cesto dijele u dvije obitelji: jednofazni (engl. one-stage) i dvofazni (engl. two-

stage). Dvofazni detektori su u vrijeme pojavljivanje postizali bolje rezultate od jednofaznih, ali

su bili sporiji. Kao što i samo ime nala�e kod njih se detekcije provodi u dvije faze. U prvoj fazi

se na slici identi�ciraju podru�cja koja potencijalno sadr�e objekte od interesa. U Drugoj fazi

se odbacuju podru�cja za koja se odredi da ne sadr�e objekte, a za preostale objekte se izra�cuna

njihova to�cna lokacija odrēdena grani�cnim okvirom. Gledano na nekoj apstraktnoj razini, mo�e

se réci da su dvofazni detektori nastali iz tradicionalnog pristupa gdje se prvo nekakvim seg-

mentacijskim algoritmom poput selektivnog pretra�ivanja odrede regije od interesa, a zatim se

provodi klasi�kacija. Ovakav pristup je pogotovo prikladan kada se analiziraju slike u kojima

su prikazane kompleksne pozadine ili objekti. Takve slike su uobi�cajene u javno dostupnim

skupovima slika koji se koriste za evaluaciju novih metoda, ali kod ultrazvu�cnih slika to nije

slu�caj. Jednofazni detektori detekciju provode u jednoj fazi, koristeći gustu mre�u predde�ni-

ranih oblika za koje model pokušava utvrditi pripadaju li nekom od objekata koje je potrebno

detektirati. Kada se za neki od predodred̄enih oblika, koji se još u literaturi nazivaju i sidreni

okviri (engl. anchor boxes, priors, or default boxes), zaklju�ci da sadr�i objekt, njegov oblik se

dodatnom transformacijom modi�cira tako da bolje enkapsulira objekt kojeg je potrebno de-

tektirati. Jednofazni detektori su u po�cetku bili br�i od dvofaznih, ali manje precizni. Razlika

u preciznosti s vremenom je nestala, a danas je većina novo predlo�enih suvremenih detektora

objekata (Ef�cientDet, YOLOv5) jednofaznog tipa.

Postojéce detektore objekata moguće je primijeniti za detekciju defekata na B-skenovima,

ali će zbog raznih problema koji se pojavljuju preciznost takvih pristupa biti ograni�cena. Neki

od problema koji se pojavljuju su mali skup slika za treniranje i evaluaciju, šumovite slike na

kojima je teško razlikovati signal defekta od signala uzrokovanog geometrijom ili šumom te

ekstremni omjeri defekata. Prvi problem utje�ce na veli�cinu modela kojeg je moguće istrenirati.

U obi�cajnim situacijama, ako imamo dovoljno veliki skup slika moguće je povécavati model

dodavanjem novih slojeva i povećavanjem broja �ltera sve dok model ne dosegne dovoljan

kapacitet za uspješno obavljanje zadatka. Ako je skup podataka manji, potrebno je smanjiti i

model, kako bi se svi parametri (te�ine) modela mogle nau�citi. Korištenje kompleksnih modela,

�cak i kada je dostupna baza slika mala, donekle je moguće kada se koristi tehnika prijenosnog

u�cenja (engl. transfer learning) i augmentacija podataka uz pomoć koje umjetno povécamo broj

dostupnih slika. Ovi pristupi mēdutim i dalje imaju ograni�cenja i nerealno je o�cekivati da se

desetci milijuna parametara uspješno mogu izra�cunati iz ograni�cenog broja primjera za u�cenje.

Jedno od rješenja ovog problema je izrada novog modela s manje parametara od modela koji se

u�cestalo koriste za zadatke na javno dostupnim skupovima slika i koji su namijenjeni za treni-

ranje na milijunima slika. Dobrim dizajniranjem nove arhitekture potencijalno se mo�e dobiti

veća preciznost i mogúcnost treniranje�cak i kada je baza podataka mala. Model i dalje mora

imati dovoljan kapacitet kako bi mogao raditi sa šumovitim podacima što je prije u radu istaknut
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kao drugi problem. Tréci problem je da se tijekom treniranje detektora objekata baziranih na

dubokom u�cenju koriste samo sidreni okviri koji dobro enkapsuliraju objekte koje je potrebno

detektirati. Zbog toga je namještanje hiperparametara sidrenih okvira jako bitan i te�ak zadatak.

Predlo�eni oblici sidrenih okvira ra�cunaju se iz de�niranih omjera i faktora skaliranja. Iako za

neke modele postoje algoritmi za izra�cun tih vrijednosti, za neke suvremene detektore to je pi-

tanje otvoreno i još nije jednozna�cno odrēden najbolji na�cin za postavljanje tih vrijednosti. Ako

po�cetne vrijednosti nisu dobro postavljene, treniranje je ote�ano a krajnja preciznost detektora

limitirana.

Na po�cetku ovog doktorskog rada, napravljena je usporedba suvremenih detektora objekata

i usporēdene su njihove performanse. Predlo�ena je nova procedura za izra�cun hiperparametara

sidrenih okvira kod Ef�cientDet arhitekture. Eksperimentima je potvrd̄eno da se korištenjem si-

drenih okvira dobivenih predlo�enom procedurom ostvaruje zna�cajno véca preciznost. U idúcoj

iteraciji je predlo�ena potpuno nova arhitektura. Implementiran je novi ekstraktor zna�cajki uz

pomóc kojega se posti�u još bolji rezultati i to uz zna�cajno ubrzanje u usporedbi s prethod-

nom arhitekturom. Novi detektor ima i modi�ciranu glavu za detekciju koja je dizajnirana

speci��cno za detekciju objekata s ekstremnim omjerima stranica. Nova arhitektura na ispit-

noj bazi podataka ultrazvu�cnih B-skenova ostvaruje veću preciznost od svih drugih testiranih

arhitektura. Iako je utjecaj prethodno navedenih problema minimiziran implementacijom ove

arhitekture , preciznost detektora koji pojedina�cno analizira B-skenove i dalje je djelomi�cno

ograni�cena. Nekada je jednostavno nemoguće razaznati je li neki signal nastao odbijanjem od

defekta ili pak zbog odbijanja od geometrije ispitivane komponente ili šuma. Kada ljudski in-

spektori provode analizu, njihova odluka ovisi i o okolnim podru�cjima (susjedni B-skenovi) ili

o prikazima istog podru�cja dobivenima snimanjem pod drugim kutom (naj�ceš́ce korištenjem

sonde s faznim poljima). Kako bi se dodatno poboljšala preciznost detektora defekata, osmišl-

jeno je i implementirano nekoliko novih arhitektura za istovremenu analizu više ultrazvu�cnih

B-skenova.

Jedna od predlo�enih arhitektura se koristi za ubrzanje automatske analize u realnim situaci-

jama gdje je potrebno analizirati podatke dobivene skeniranjem metalnog bloka sondom s faznim

poljima. Predlo�ena arhitektura, uz minimalne gubitke preciznosti, istovremeno analizira slike

pod svim kutovima. To je izvedeno tako što se prvo provede dinami�cko spajanje slika, a za-

tim detektira defekte u rezultantnoj slici. Te�ina pojedine ulazne slike, odred̄uje se korištenjem

submodela koji uz pomóc nekoliko 3D konvolucijskih slojeva i mehanizmom pa�nje odred̄uje

va�nost pojedine ulazne slike.

Druga predlo�ena arhitektura za analizu sekvenci ultrazvu�cnih slika, koristi se za poboljšanje

preciznosti detektora. Poboljšanje je ostvareno proširenjem ulaza u model u 3D volumen. Um-

jesto analize jednog B-skena, ovaj model analizira sekvencu B-skenova koji prikazuju susjedne

presjeke materijala. Za po�cetak je pokazano da naivan pristup gdje se ulaz u postojeće detek-
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tore samo proširi iz trokanalne slike u devet-kanalnu sliku ne dovodi do poboljšanja. Zatim su

predlo�ena dva nova pristupa koja su bazirana na izra�cunu zna�cajki iz pojedine ulazne slike,

njihovom spajanju u visokodimenzionalnom prostoru zna�cajki te provōdenju detekcije iz do-

bivenih zna�cajki. Za spajanje zna�cajki su isprobana dva pristupa, jedan baziran na obi�cnom

dvodimenzionalnom konvolucijskom sloju te jedan baziran na konvolucijskom LSTM (Long-

short term memory) sloju. Eksperimentalno je pokazano da predlo�eni pristupi dodatno povećavaju

preciznost detektora defekata.

Klju �cne rije�ci: analiza ultrazvu�cnih slika, nerazorno ispitivanje, automatska detekcija de-

fekata, detekcija objekata, augmentacija slike, generiranje slika, duboko u�cenje
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Chapter 1

Introduction

Non-destructive evaluation is a set of techniques used to examine objects of any type, size,

shape, or material to determine the presence or absence of discontinuities such as defects, or to

evaluate other material characteristics [1, 2]. Applying an NDE method does not cause damage

to the inspected component, and it does not affect its usability. This property makes NDE

methods perfect for continuous inspection of critical components in many systems, especially

if the inspected component is expensive to manufacture. Some examples of NDE techniques

include:

• Visual testing (VT)

• Penetrant testing (PT)

• Radiographic testing (RT)

• Ultrasonic testing (UT))

• Eddy current testing (ET)

• Thermal infrared testing (TIR)

Every NDE method has limitations and in most cases, a thorough examination will require an

application of a minimum of two NDE methods[1]. Non-destructive evaluation can be used to

ensure proper quality after the product manufacturing, or it can be used to continuously monitor

some components. This is done to minimize the possibilities of failure, prevent disasters, and

economically plan the replacement of components. NDE methods are commonly applied in the

oil and gas industry, aeronautics, and various power plants including the nuclear power plant.

1.1 Ultrasonic testing

Ultrasonic testing can be used for the inspection of various materials such as metals and alloys,

composites, ceramics, plastic, and sometimes even wood and concrete. There are several ways

an ultrasonic testing technique can be implemented, but the main principles are always similar.

Pulse-echo (PE) is one of the simple implementations of ultrasonic testing that consists of only
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Introduction

one transducer that serves both as the transmitter and the receiver of ultrasound energy. An

illustration of PE is shown in Figure 1.1. An ultrasonic transducer is placed on top of some

Figure 1.1: Illustration of the pulse-echo method for ultrasonic testing

material, and then it transmits ultrasound waves throughout the material. Whenever there is an

inconsistency in material density, the acoustic impedance changes and causes the re�ection of

some of the ultrasonic waves. The �rst time this happens is when the waves are entering the

material. A large portion of the energy will then be immediately re�ected and when plotting the

amount of received energy as a function of time (A-scan), this signal will appear at the beginning

of the x-axis as shown on the plot displayed in Figure 1.1. The second time ultrasonic waves

will re�ect back to the probe is when the waves reach the bottom of the inspected component.

This signal is called the backwall signal. When searching for a defect in the material, trained

experts search for signals that appear between these two characteristic signals. If a signal is

found in this area, it is probably caused by the defect that is positioned between the surface of

the material and its bottom. The described procedure shows how the analysis of one A-scan is

done. In reality, the inspection of the whole material is needed, so the probe must be moved

along the surface. This is usually done with a robotic manipulator that consistently moves the

probe from one side of the material to the other and collects a series of A-scans. The surface

of the inspected material is often not perfectly smooth, so while moving the probe the air can

appear in between the probe and the inspected material (lift-off). This causes a lot of noise in

acquired data, so to prevent this from happening, the scanning can be performed with the probe

and the material submerged in some liquid. Another possibility is to apply lubricant between

the probe and the material, which prevents the air from getting in between the probe and the

material. Once the probe was moved from one side of the material to the other, data from one

cross-section of material was collected in the form of a series of A-scan. A series of A-scans can

2
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also be converted into an ultrasonic image for easier manual analysis. This is done by converting

each of the A-scans into one image column. Pixel intensities are determined from the amplitudes

of corresponding A-scans. Also, since the x-axis of the A-scan represents the time needed for a

signal to be re�ected back to the probe, if the speed of ultrasonic waves thorough the inspected

material is known, it is possible to calculate the exact depth of an artifact that caused some

signal. This allows the inspector to directly report the coordinates of the defects found inside

the material. PE technique is extensively used in industry due to its simplicity and ef�ciency

[3]. However, it has one substantial disadvantage. If a �at defect is positioned parallel to the

trajectory of transmitted ultrasonic waves, the surface from which the waves can possibly re�ect

is very small. This can easily lead to an undetected defect. To increase the reliability of �nding

a defect, scanning at various angles can be performed. However, if different probes are used to

accomplish this, the time needed for data acquisition would be increased by several times. A

better option is to use a single phased array probe. This probe has the ability to simultaneously

scan the material from different angles. An illustration of a phased array probe is shown in 1.2.

In Phased Array Ultrasonic Testing (PAUT), images are typically formed through constructive

Figure 1.2: Illustration of the phased array ultrasonic testing (PAUT)

and destructive superposition of signals backscattered from �aws or geometric features [4]. The

angle of the transmitted beam can be steered. This enables the phased array probe to collect

data from dozens of angles in a single pass from one side of the material to the other. Some

defects might not be visible from all angles, so all of the collected data must be analyzed. This

increases the reliability of inspection, but it also means more data for inspectors to analyze.

Another ultrasonic testing implementation that was commonly used before is called Time

Of Flight Diffraction (TOFD). Data obtained by this approach was not used in this thesis, so the

principles of this approach will not be discussed here. In general, ultrasonic testing has many
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advantages compared to the other Non-destructive testing techniques. Some of the important

advantages are [5]:

• detection of both surface and subsurface discontinuities

• higher depth of penetration than other NDT methods

• pulse-echo and phased array techniques require only single-sided access

• highly accurate

• requires minimal part preparation

• instantaneous results

These advantages made ultrasonic testing a popular NDE approach for industry applications.

1.1.1 Ultrasonic testing data analysis

The amount of data collected during the ultrasonic inspection is immense, especially if a phased

array probe is used and the cross-sections are acquired at various angles. The analysis of the

UT data is currently done manually by trained personnel. This is done with the help of soft-

ware that is able to process and display the acquired UT data in various formats. Such software

has many functionalities that help the inspectors to analyze the data quicker and more con�-

dently. However, commercial software for UT data analysis, currently do not contain advanced

tools for automated UT data analysis and defect detection. During the ultrasonic data analy-

sis, trained inspectors simultaneously look at various representations of data. Some commonly

used representations are shown in Figure 1.3. The top left window contains an A-scan, which

Figure 1.3: Various representations of UT data.

is a representation that displays the amount of received energy as a function of time. On the

right side of the �gure, two variants of B-scans are shown. The upper B-scan was obtained by
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transferring each A-scan into one image column. The defects that are in reality vertical will

appear slanted in this view because the angle of the ultrasonic waves is not taken into account.

The lower variant is called volume corrected B-scan (VC-B-scan) and in this case, the A-scans

are transferred onto an image at an angle that the ultrasonic waves were traveling through the

material. VC-B-scans preserve realistic orientations of the artifacts found inside the material.

In the bottom-left window, a C-scan representation is shown. This representation is obtained by

projecting minimum values of some ultrasonic image columns, which means that each B-scan

will be converted into one row. Values of each pixel of that row were calculated as the minimum

value found in some columns of the B-scan. If this operation was done for the whole column of

a B-scan, the projection would almost always return the minimum values caused by the initial

pulse or the backwall signal, so the useful information would not be preserved. Instead of using

all the pixels from a column, a C-scan projection is done only for the area between the initial

pulse and the backwall signal. By looking at a C-scan, we can quickly get a rough idea about

the B-scans that contain defects. By looking at Figure 1.3 it is clear that the B-scans with in-

dices two, three, four, and six need a more detailed analysis. The inspection usually starts with

that step. The inspectors then thoroughly check B-scans that looked suspicious on the C-scan.

When analyzing some signal seen on a B-scan, the inspectors can also use other representations

such as A-scan or sectorial scan (S-scan) to con�rm their decision. Another thing that signi�-

cantly helps when making a decision is to look at the surrounding B-scans. Many defects are

not planar, so their signal will appear on multiple adjacent B-scans. Also, if the data is scanned

with a phased array probe, it is useful to look at the same cross-section of the material from

different angles. An example of these useful surrounding B-scans is illustrated in Figure 1.4.

Figure 1.4: Sequences of ultrasonic B-scans. The same cross-section of material can be seen from
multiple angles when the scanning is performed with a phased array probe. Neighboring cross-sections
often contain the same defects and can be very useful during the analysis.
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1.2 Problem description

There are several limitations in the procedure currently used to analyze UT data. First, there is a

need for specially trained experts and their training requires a lot of time. Each inspection takes

a signi�cant amount of time, so the real-time results are usually not possible even if several

inspectors are simultaneously working to analyze the data. Furthermore, decisions made by

the inspectors can be subjective and prone to human errors, especially when a large amount of

data needs to be processed which impacts the concentration of the inspectors. This problem

will only become more prominent with the increasing usage of phased array probes that acquire

more data compared to the traditional single-angle probes. Most of the collected UT data does

not actually contain a defect. Having an algorithm that can extract only the suspicious parts of

the data would signi�cantly increase the analysis speed. Additionally, it would be very useful

to precisely localize potential defects and pass all the suspicious signals to the inspectors for

con�rmation. This semi-automated approach is probably the intermediate step towards fully

automated systems for ultrasonic testing data analysis.

In this work, a deep learning approach is used to analyze ultrasonic testing B-scans and

to localize defects. Several problems must be tackled in order to create a precise and reliable

algorithm for defect detection. A deep learning approach is chosen due to its superiority and

better generalization compared to the traditional computer vision methods. However, in order

for a deep learning approach to be reliable, a large enough dataset of images must be acquired

for the training of such an approach. As stated before, the amount of data is increasing with

the usage of phased array probes, but most of those images are empty, which is not ideal for

training of supervised object detection model. An approach based on anomaly detection can

be used in that case. Such approaches are trained solely on the normal data and are designed

in a way that leads to higher anomaly scores when the model encounters data that differs sig-

ni�cantly from the normal data used during the training. Another option that is used in this

work is to collect the data by scanning components with arti�cially created defects inside the

material. This way, a database that contains enough B-scans displaying defects is collected.

Other problems that are encountered when applying object detectors for defect detection from

ultrasonic images are the noise and the signals that appear due to re�ections from the geometry

of the scanned component. These signals can sometimes appear very similar to the defects' sig-

nals. A computer has no additional knowledge and input about the scanned component, which

is something that human inspectors usually have access to when performing the analysis. This

makes the decision-making process of some methods even harder. It is also one of the reasons

for the poor performance of the traditional approaches, since the noise and geometry signals can

hardly be anticipated and a method for defect detection must have a signi�cant generalization

ability while retaining reliability. There can also be some other challenges depending on the
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types of components that are scanned (pipelines, bolts, solid metal blocks, welds, etc.) but such

case-speci�c challenges are not discussed in detail here.

The focus of this thesis is the development of novel approaches based on deep learning

for the analysis of ultrasonic B-scans. It is necessary that the proposed architectures can be

trained with a small amount of data since blocks with arti�cial defects are expensive and in

real-life the amount of images that can be collected for the training of a deep learning model

is limited. As shown in the publications attached to this thesis, training on a small dataset

can be accomplished by using transfer learning, extensive data augmentation, generation of

arti�cial images, or by designing a simpler model with fewer parameters. Data augmentation

and transfer learning are standard tricks when applying an existing object detector on a new

dataset. However, arti�cial image generation with the goal of improving a detector's precision

is not so trivial and thus not used as often as other data augmentation techniques. This topic is

discussed and researched more thoroughly in Pub 3. Another problem that needs to be taken

into account when developing a new object detection method is the extreme aspect ratios of

the defects that need to be detected. In Chapter 3 the working principle of one-stage detectors

is described. The in�uence of the anchors' design and placement on the loss function and

the performance of the object detector is explained. The anchors' design and tweaks that are

necessary to obtain the maximal performance out of object detector when analyzing ultrasonic

B-scans are the topics of Pub 1 and Pub 2.

Another challenge with the current approaches for automated analysis of UT data is that

they use only one cross-section of the material (for example one B-scan) during the decision-

making. This approach is not ideal since useful information from the surrounding areas remains

unused. Human inspectors always look at the suspicious areas of material from several view-

points. Generally speaking, looking at the same material cross-section from different angles

will produce similar images. The difference will be in the sizes of the defect's signal and usu-

ally, in the higher angles, the defects will appear more elongated. The only time a signi�cant

difference can occur is if the defect is planar and positioned in such a way that the ultrasonic

waves do not re�ect from it for a particular scanning angle. In that case, the defect will not be

seen on some scanning angles, but it will probably appear on some others (that is the point of

scanning the material with a phased array probe). This is why it is important to inspect data for

all the scanning angles to ensure none of the defects will be missed. However, this slows down

the inspection regardless of the way it is done (manual or automated). One of the contributions

of this thesis is a novel method for simultaneous analysis of all scanning angles (Pub 4) that

was designed to speed up the overall analysis without sacri�cing reliability.

Simultaneous analysis of ultrasonic B-scans can also be used to increase the mean average

precision of the defect detector. In this case, it is better to use the neighboring cross-sections of

the material rather than the same cross-section as seen from a different angle. However, a simple
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input expansion of the standard object detector will not enable the model to use ef�ciently this

additional information. A more complex approach is needed, and designing such an architecture

was the topic in Pub 5.

While there is a large number of approaches for image analysis, most of them are designed

for some general computer vision tasks. Straightforward application of the existing method can

sometimes lead to good results, but more often some tweaks are needed to achieve the desired

performance. The existing methods can be notably improved if some NDE domain-speci�c

knowledge is combined with the knowledge of computer vision and if the novel models are

developed with this speci�c application in mind.

1.3 Scienti�c contributions

The emphasis of this thesis is on novel deep learning-based methods for the analysis of ul-

trasonic testing data. More speci�cally, one-stage object detectors are used to detect defects

from ultrasonic B-scans. In order for this approach to work well and outperform existing meth-

ods, an architecture appropriate for the detection of objects with extreme aspect ratios must be

developed. To further improve the results, a method for automated analysis of UT data must

approach the current procedure for the analysis of UT data which relies on con�rming decisions

by looking at the same area from different viewpoints. This can be accomplished by expanding

the input to the model and designing an architecture that can successfully capture this additional

information and improve its decision-making process. The scienti�c contributions of this thesis

that are the results of the performed research are the following:

• Method for detection of defects with extreme bounding box aspect ratios from ultrasound

images based on deep one-stage detector.

• Method for defect detection by simultaneous analysis of multiple ultrasound images based

on deep one-stage detector.

1.4 Thesis structure

The main contributions of the thesis are presented as a compilation of �ve research publications

addressing the research objectives stated earlier. The thesis is structured as follows. Chapter 2

contains an overview of the existing methods for automated analysis of NDE data. Chapter 3

describes the existing approaches for object detection and their working principles. Chapter 4

contains de�nitions of commonly used metrics for evaluation of object detectors and methods

for automated defect detections. The main scienti�c contributions of the thesis are presented

in Chapter 5. Chapter 6 lists the publications used in this work, and in the following Chapter

7 the author's contribution to each individual publication is given. Finally, in Chapter 8 the
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conclusion is written together with some possible future research directions.
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Chapter 2

Overview of existing approaches for

non-destructive evaluation data analysis

2.1 Methods for automated analysis of ultrasonic testing data

Ultrasonic testing can be used to inspect various materials. It is commonly used for inspection

in aeronautics, the oil and gas industry, and all kinds of power plants. It is often applied to

inspect metal components, but it can also be used to inspect carbon �ber reinforced polymer

(CFRP) specimens, or some other materials such as ceramics, concrete, and wood. Since the

inspection procedure differs depending on the inspected material, obtained data also differs, so

a variety of methods was invented to automatically analyze collected data. Also, depending on

the use case, the results of the analysis can be of different granulation. Most of the methods

for automated analysis perform classi�cation which means that for some samples such as one

A-scan, or one B-scan it is possible to determine if it contains a defect's signal, but the exact

location of the defect is not explicitly given by such algorithms. For A-scan analysis, this is

not a problem, since one A-scan is already very localized and we can precisely determine the

defect's real-world coordinates from that information. For B-scan, it is possible to perform

a more thorough analysis and provide the location of the defect (object detection methods),

or even a pixel-wise segmented map (semantic segmentation methods). If the algorithm for

automated analysis is used in collaboration with a human inspector, it is useful if an algorithm

can at least give a rough location of the defect so that the inspector knows which part of the data

is considered anomalous. Also, a �ne-grained localization enables automatic calculation of the

dimensions of the defect, which can be used to assess the severity of a problem.
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2.1.1 Methods for A-scan analysis

The defects can be recognized from the acquired UT signal because the re�ections from material

discontinuities appear in the A-scan as abrupt time localized changes resulting in time-varying

spectral characteristics [6]. One of the popular approaches for automated defect detection from

ultrasonic A-scans is to process the signal with wavelet transform and then feed the obtained

coef�cients into some classi�er.

Signal processing with wavelet transform works by decomposing the signal into N levels

and calculating appropriate approximation and detail coef�cient. By thresholding the detail co-

ef�cients and calculating inverse transformation on the remaining data, it is possible to denoise

the original signal. Usage of long time intervals to obtain more precise low-frequency infor-

mation and shorter regions for obtaining high-frequency information is enabled by applying a

windowing technique with variable-sized regions. Many authors used the wavelet transform

to improve the quality of A-scans before performing further analysis. The authors of [7] built

a classi�er based on this procedure and used it for the classi�cation of three distinct signals

(fault echo, echo from weld, and backwall echo) in the material used for airplane engines. Af-

ter processing the signals with the discrete wavelet transform, the authors calculated features

such as mean value, standard deviation, etc. from the ultrasonic signal. The features were then

classi�ed by Support Vector Machine (SVM). A similar approach was used in [8] where the

authors classi�ed four different types of defects in stainless steel plates. The data consisted

of 240 A-scans collected using a pulse-echo technique. Unlike [7], the authors of this work

used an ANN to classify defects and achieved an average accuracy of 94%. There are also

many other works [6, 9, 10] that applied similar approaches for the development of methods

for automated classi�cation of A-scans. These methods were developed for different types of

UT data and sometimes use a slightly modi�ed approach compared to the one described above.

For example, in [9] the process described earlier was used for the analysis of ultrasonic TOFD

data [9]. The authors concluded that the SVM classi�er performs well even when the dataset

is small, which is the main advantage compared to the ANN classi�er. The authors of [6] used

the envelope shape of the signal as an input to the ANN instead of calculating mean value, max

value, or some other similar features usually calculated from the signal. Signal prepossessing

with the wavelet can remain the same regardless of the used classi�er and inputted features,

but sometimes different features work better for different classi�ers. In [11], a special type of

ANN called Convolutional Neural Network (CNN) was used to analyze UT data obtained by

scanning CFRP specimens. The authors additionally modi�ed a standard CNN by swapping the

last layer with an SVM, which improved the results. In order to feed the information extracted

with wavelet transform to the network, calculated transformation coef�cients were re-organized

into a 2D matrix with dimensions 32x16, which was then used as an input. The authors con-

cluded that this input works better than feeding hand-crated features from the coef�cients. It
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is also possible to use a different preprocessing / feature extraction technique such as DFT or

Cosine transform [12] or to perform additional feature selection of the calculated features using

a PCA [12, 13] or Wilcoxon-Mann-Whitney test [12]. Another option is to skip completely

hand-crafted feature extraction and let a machine learning (ML) model automatically determine

the important information from the data. The progress in deep neural networks and their appli-

cations to various domains has greatly stimulated research of such methods for the analysis of

UT data [14, 15, 16, 17]. The authors of [14] collected TOFD and pulse-echo (PE) data. The

author inputted A-scans into ANN, which was used to classify four different types of the signal

(conditions of weld joints). In the case when the A-scans were �rst smoothed with a low-pass

�lter, the ANN achieved an accuracy of 73% for PE and 98% for TOFD signal classi�cation.

In [15] it was demonstrated that a deep neural network (DNN) with dropout regularization out-

performs a simple ANN. The authors performed many experiments in the search for the best

hyperparameters, such as the dimension of hidden layers and activation function choice. This

work was also the �rst work to run experiments for automated analysis of UT data on a mixed

frequency dataset. A DNN achieved signi�cantly better accuracy than ANN on the task of clas-

sifying �ve defect types. The authors also noted that image representation of the data such as

B-scans and C-scans are very useful in the context of non-destructive evaluation and that these

representations should be considered in the future for the development of automated UT data

analysis systems. In the follow-up work [16], the authors added Gaussian noise to collected

A-scans and compared the performance of CNN and DNN for various levels of signal-to-noise

ratio (SNR). The CNN network achieved on average 6.82% better accuracy compared to the

DNN. The authors also noted the importance of data augmentation. The authors tested time-

shifting of the defect signals, which mimics changing the distance between the transducer and

defect in a real coordinate system. Data augmentation led to signi�cant improvements for both

the DNN and CNN, and for all the SNRs. In [17], a CNN in the form of an autoencoder

was used to further improve the denoising abilities of CNN. Autoencoder is composed of three

parts: encoder, latent layer, and decoder. The spatial resolution in the encoder is decreased

by using the pooling layer. After the latent layer, the spatial information is increased by using

upsampling layers. This bottleneck design forces the architecture to learn and extract important

information from the input data. It was shown that such architecture works better with noisy

data compared to the standard CNN. Similar to the previous work, data augmentation was used

to increase the number of collected samples, and various levels of Gaussian noise were added

to test the performances of the models. Autoencoder architecture was proven to work well for

denoising and the performance was improved by several percents in different experiments by

using this approach. By looking at the aforementioned related works, it can be seen that the re-

cent trend is to collect a large enough database of A-scans and then used some direct approach

without hand-crafted feature extraction. DNN and CNN proved to be especially suited for this
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task. Also, many authors noted the importance of expanding their current work to work with

ultrasonic images. However, the number of research work showing the usage of modern ML

and DL-based solutions for automated analysis of UT data is limited, presumably because of

the costs involved with the collection of a large enough dataset of ultrasonic images.

2.1.2 Methods for B-scan and C-scan analysis

Methods for automated UT data analysis have for a long time relied on approaches for A-scan

analysis. Traditional well-investigated signal processing techniques could be applied to A-scan

signals and the achieved results were good. On the other hand, traditional techniques for image

analysis were not as good, so not many works went down this path. Despite this, there are

some works that explore traditional approaches for automated analysis of UT images. Wavelet

transform can also be a useful tool for feature extraction from images, as shown in [18]. The

most relevant features were selected by PCA, and fed into a fuzzy C-mean clustering classi�er.

The proposed approaches were tested on several TOFD images with known geometric defects

in them. Presented results show that the proposed approach can successfully segment different

types of defects in an image. However, to ensure the reliability of mentioned method, it should

be tested on a much larger and more diverse dataset of images. Another example of a traditional

image processing technique for analysis of ultrasonic B-scans was shown in [19]. In this work,

the authors used a Radon transform to detect cracks in rails. The data was obtained by scanning

the rail with three different probes. Acquired B-scans were �rst processed with the wavelet

decomposition, which was done to suppress the horizontal structures, thus eliminating the noise

in the B-scans while preserving the defect's signal. The authors then used Radon transform

to detect cracks in the denoised images. The authors concluded that in future work, a neural

network approach should be built in order to create a fully automated system. In [20], TOFD

B-scans were analyzed using a parabola matched �lter. This is possible because the motion

of the emitter and receiver relative to the scatterer such as defects describes the characteristic

parabolic shape. One of the drawbacks of this approach is that the parabola's form varies with

the depth of the defect, so this approach works only for a speci�c depth. The approach achieved

good results when tested on simulated data, but on real experimental data, it was less effective.

Traditional image processing techniques were also used for the analysis of ultrasonic C-scans

[21]. In this work, the authors used a reference image, a C-scan, showing the �awless inspected

component. If later a new instance of the same component is inspected, it is possible to compare

the obtained C-scan with the expected one and highlight the differences. The authors reported

no missed defects, but the number of false detection was very high. The robustness of this

approach is probably affected by the fact that the data from different instances of the same

component often looks different in real life.

Lately, a deep learning approach became a dominant approach for the analysis of sequences
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and images since some architectures like Convolutional neural networks (CNN) have a natural

ability to process sequences and grid-like representations of the data. For a long time, an ap-

proach based on deep learning has been hindered by the cost and dif�culty of gathering enough

data to train a good deep learning network [22]. If a big enough dataset of UT data is available,

one can utilize additional context information available in the B-scan compared to the individ-

ual A-scan analysis, and develop a more precise method. This advantage was also noticed by

many other authors, so the development of methods for B-scan analysis recently got a lot more

attention. In [22] it was demonstrated how the data needed for the training of deep learning

architecture can be simulated. The authors used simulated data to train a network for crack

characterization. proposed deep learning approach was compared to the 6dB drop method. The

deep learning model was able to size 97% of the tested defects of lengths 1 to 5 mm within ± 1

mm, while the 6dB method could only size 48% of the defects. In [4] the authors showed that

a CNN trained mostly with simulated data in combination with a small amount of real data can

be used to detect, locate and size a defect from ultrasonic phased array data. The used dataset

was created by GPU-accelerated �nite element simulations and then expanded with a small per-

centage of real data. The authors trained a two-stage detector Faster-RCNN [23] that reached

the area under the curve of 0.95 when tested on simulated data. When testing the detector on

real data with an intersection over union (IOU) threshold of 0.4, the model was able to locate

70% of the �at bottom hole defects. Another approach for arti�cially generating the UT images

used for the development of an ML classi�cation model was shown in [24]. The authors ex-

tracted signals of several defects and inserted them into ultrasonic B-scans that do not contain

any �aws. Using this technique, 20000 images were generated and used to train a model similar

to VGG[25]. The authors compared the probability of detection [26, 27] achieved by this model

with the human performance and concluded that the ML approach works as well as human in-

spectors. However, using only the generated or simulated data for comparing the performances

can give an unwanted advantage to the ML model. Since the arti�cially generated UT data do

not contain all the variations that can appear in real situations, reliable evaluation should be

performed on a large-enough dataset of real images [4, 28]. In [28] the authors trained a ma-

chine learning model on an arti�cially expanded dataset of multichannel phased array data of

austenitic welds. A separate subset of realistic data was used to test the performance of an ML

classi�cation model and compare it to the human-level performance. The model almost man-

aged to match the inspectors' performance, missing two out of nine �aws that were detected by

the experts. In [29] another example of training a CNN for the classi�cation of different types of

defects from simulated images is shown. The authors reported an accuracy of over 90% for all

types of tested defects. In [30] a real UT data was used for the training and the testing of deep

learning networks for defect detection from ultrasonic B-scans. The authors tested SSD[31]

and YOLOv3 [32] architectures and concluded that YOLOv3, which achieved a mean average
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precision of 89.7 %, outperforms SSD. However, the testing dataset contained only 98 images.

In [33] the authors proposed a deep learning approach for the identi�cation of the geometrical

elements of a weld. The proposed process allows the segmentation of 3D Phased-Array Ultra-

sonic testing scans. The segmentation of the welded joints does not give information about the

quality of the inspected weld, but the geometrical information can be used to determine if the

acquisition of the data was performed correctly. Calculated geometrical information can also

enable algorithms for defect detection to position detected defects within the geometry of the

weld. This increases the relevance of the UT analysis and provides more detailed overall results.

The used dataset was created from 30 3D UT scans, and the model achieved a voxel accuracy

of 96.76% and a dice score of 90.00% on the test subset. In [34] the authors collected ultrasonic

data by inspecting additively manufactured specimens. The specimens' surfaces were on pur-

pose created with a different level of roughness, which in�uences the signal-to-noise ratio. The

goal of their work was to classify specimens into different categories according to their porosity

content. To accomplish this, the author tested several architectures (CNN, DNN, MLP) for the

classi�cation of collected ultrasonic images and determined that the CNN model achieved the

best result with an accuracy of 94.5%.

2.2 Methods for automated defect detection from other types

of NDE data

The methods mentioned below do not make an exhaustive list of works from NDE domains

other than UT. There are many other works from each of the below-mentioned domains, and

the publications listed here are simply the examples used to show recent trends in applications

similar to the one from this thesis.

2.2.1 Visual inspection

Visual inspection is a type of NDE technique used to inspect the surface of a material and

detect abnormalities. It is applied in various industries and for inspection of different types of

material such as concrete inspection [35], rail systems [36], products (wires[37], steel strips [38]

and others), pipelines [39], wind turbine generators [40], etc. Some approaches for automated

analysis of images collected during the visual inspections are shown in the rest of the section.

In [40] the authors showed that the features extracted with a pretrained deep learning convo-

lutional model work better than the hand-crafted features. The goal of the work was to visually

inspect the images of wind turbine blades and detect possible damages like cracks, paint peeling,

etc. The authors compared the classi�cation performance of the SVM model depending on the

inputted features. They concluded that the features extracted with VGG[25] architecture lead to
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better performance compared to hand-crafted descriptors such as Histogram of oriented gradi-

ents (HOG)[41] and Scale-invariant feature transform (SIFT) [42]. In [43] the authors created

a convolutional neural network to inspect rolled steel strips. The goal was to classify images

into seven categories depending on the defect that appears on the strip. The achieved results

were very promising, especially if it is taken into consideration that many of the deep learn-

ing architectures and techniques used for improved training were not yet invented at the time

of publication of this article. In [37] the authors develop a one-stage detector to analyze wire

images and detect three different types of surface defects. The proposed model was created by

enhancing the Darknet53 [32] backbone with attention module [44] and combining it with Fea-

ture Pyramid Network (FPN) [45]. Experiments showed that the proposed approach achieves a

mean average precision (mAP) of 88.5% which is a signi�cant improvement compared to the

other similar methods that were used before for this task. The authors of [46] propose a method

for railway shelling defect detection. The authors compared several deep learning classi�cation

models with traditional approaches based on hand-crafted features and SVM classi�er. Deep

learning convolutional networks, VGG and ResNet, achieved far superior results compared to

approaches based on HOG, SIFT, and LBP.

2.2.2 Thermographic inspection

Thermographic inspection is one of the NDE techniques commonly used to inspect carbon �ber

reinforced polymer/plastic (CFRP). This material is often used in aerospace industry, automo-

tive industry, power plants (e.g. wind turbine blades), etc. so convenient methods for such data

analysis are necessary.

In [47] the authors tested several architectures for automatic defect detection from thermo-

graphic inspection images. The best results were achieved by the architecture based on the

pretrained VGG [25] on top of which a decoder part inspired by the U-net [48] architecture

was added. The authors also tested an approach for temporal analysis of each pixel-value based

on 3-layer LSTM [49]. However, this temporal model did not achieve good results for all the

tested samples. In [50] the authors proposed a generative adversarial network (GAN)-based

semantic segmentation model trained with a novel joint loss function. The authors develop this

model with the goal of analyzing different types of data without adjusting the parameters of

the model or requiring multiple models. They tested their approach on carbon �ber reinforced

polymer/plastic (CFRP) specimens and compared the results with existing methods for seman-

tic segmentation. The authors evaluated the model using the F-Score, and the model proposed

in this work signi�cantly outperformed other tested models. In [51] the authors used a pre-

trained Faster-RCNN object detector to detect defects from thermographic images. The model

was trained using the images collected from the literature and validated on specimens produced

using different sets of material in order to show the generalization ability of the proposed model.
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The best among the tested variants of the model achieved a mean average precision (mAP) of

75 %.

2.2.3 Radiography inspection

One of the NDE techniques often used to inspect the internal structure of material besides

the UT is radiography testing. This approach is commonly used to inspect metal parts in the

automotive industry to ensure that none of the components contains some internal weaknesses

that could lead to expensive failures in the future. This approach is more popular for testing

independent components right after the manufacture, since later the process is more complicated

and would require signi�cant preparation and often disassembly of the system being inspected.

In [52] the authors proposed a system for automated detection of defects from X-ray images

using a deep learning object detector. They tested two popular architectures (FPN[45] and

Faster-RCNN[23]). The used dataset proved to be very challenging, so the achieved mean

average precision (mAP) was quite low. The authors concluded that the FPN is better suited for

detecting small defects compared to the Faster R-CNN.

In [53] the authors dealt with common problems encountered when developing a method

for automated defect detection from NDE data - a small dataset. The main idea proposed in

this publication was to use a Wasserstein Generative Adversarial Network (WGAN) [54] for

arti�cial dataset expansions. They tested their approach on two datasets, one of which is a

dataset of X-ray images of welding joints. The authors tested Inception [55] and MobileNet

[56] architectures and, in the end, created an ensemble with a bit larger weight put on the

Inception since it slightly outperformed MobileNet. The �nal ensemble achieved accuracies of

over 94% for all the classes.

In one of the earlier works [57], the authors designed a method for the detection of defects

from X-ray images by analyzing the gray line curve of vertical weld scan lines. The method for

detection relies on the existence of local minimum points in cases where a defect is present in

the weld. After the potential defects are segmented with this method, features are extracted and

fed into the SVM classi�er. This step is used to remove false positives from the �rst step. Ex-

perimental testing showed that SVM reaches an almost perfect accuracy and surpasses Arti�cial

Neural Network (ANN) and Fuzzy inference classi�ers.

In [58] the authors trained a deep learning network in three stages and used it to detect air

bubbles in engines. First, they train an autoencoder using normal images, which are easier to

obtain. Only the encoding part from this network is used later to perform classi�cation. Then,

the weights of the encoder are frozen and the rest of the network (fully connected layers)is

trained on both defective and normal images. In the last step, the whole network is �ne-tuned

jointly using both normal and defective images. The proposed approach yielded around 9% of

false positives and around 6% of false negatives.
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Chapter 3

Overview of deep learning-based object

detection methods

Object detection is one of the fundamental tasks in the area of computer vision. The main

goal of object detection methods is to determine if objects from particular categories (such

as person, car, tree, etc.) are present in an image and what are the exact locations of those

objects. Object detection can be applied in various domains such as autonomous driving and

robotics, surveillance, agriculture, medicine, industrial inspection and manufacturing, sports,

and many others. Since object detection is an old problem, many traditional approaches were

developed to perform this task. However, for some years now, the deep learning paradigm

has completely taken over this �eld. Deep learning models, usually based on convolutional

neural networks (CNN) architectures, achieve great results both in real-life applications and

many publicly available datasets for bench-marking novel object detection methods [59, 60, 61].

Convolutional neural networks were dominating in computer vision area ever since the authors

of AlexNet[62] won the ILSVRC 2012 challenge [60]. The rise of CNNs was largely driven

by the increasing availability of large-scale public datasets and the more accessible computing

power.

3.1 Convolutional neural networks

The dominance of CNNs in computer vision was not a coincidence. Convolution operation

can be regarded as a sliding window approach, a strategy that is intrinsic to visual processing,

particularly when working with high-resolution images [63]. The �rst step in the development

of the CNN model is the collection and annotation of the data for which the model will be used.

The database can be considered as a set of examplesx associated with target values (labels)y.

The goal is to use an optimization technique to determine parametersq of the model. Those

parameters are directly used to map inputs to desired targets. The trained model should in theory
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learn a functionf (q) that transforms the inputs to their corresponding targetsf (q) : X 7! Y.

In the case of classi�cation, the desired target value is simply a number that represents some

category. In the case of object detection, the targets contain �ve values for each object in the

input image that needs to be detected. Those values represent the category to which some

object belongs and the bounding box that encapsulates the object. Bounding box are usually

expressed either as four corner points of the object(xmin;ymin;xmax;ymax) or the center point

and the dimensions of the object(xc;yc;width;height). The target values are used to de�ne the

loss function (objective function or cost function terms are also used). The loss function de�nes

the distance between the values outputted by the network and the target values. In order to �nd

optimal parameters of the model, the expected lossJ� (q) over data generating distributionpdata

must be minimized. In practice, this is not feasible, so the loss function is approximated from

the collected training data:

J(q) =
1
N

N

å
i= 1

L( f (xi ;q);yi) (3.1)

One desirable property of the loss function is its differentiability. If a deep learning network

is designed as a sequence of differentiable operations on the input data, one can propagate the

error from the loss function through all layers of the network. Propagating error from the net-

work's output to its input allows the network to update values of its internal parameters (q) in a

way that leads to more precise predictions. This process is also known as back-propagation and

was �rst successfully used by LeCun for training the CNN network [64] on a task of handwrit-

ten digit recognition. Minimization of the loss function relies on �rst-order partial derivatives of

the loss function with respect to the model parameters. As stated earlier, if all the operations in

the network are differentiable, one can apply the chain rule and calculate the gradientÑqJ(q)

of the loss function with respect to the model parameters. Once the gradient is calculated, a

method like stochastic gradient descend (SGD) can be applied to update the parameters of the

model in each training step. Many other optimization methods were later built by upgrading

upon the vanilla SGD. Some commonly used optimizers include RMSprop[65], ADAM [66],

Adadelta [67] and Adagrad [68]. To aid the process of training and allow the network to focus

on important information in the input, researchers have come up with many different layers and

optimization procedures. The layers can be arranged and combined in numerous ways and re-

searchers are constantly improving the layouts of existing CNNs which leads to the development

of novel architectures, usually with improved performances. The improved performance can for

example mean better accuracy, easier training, increased generalization ability, decreased infer-

ence speed, or something similar. The reason why CNN architectures work so well for images

is the natural ability of such architectures to process sequences and grid-like representations

of data. Convolutional layers operate on the input tensor by sliding a kernel over the input,

multiplying the values of a kernel with the input at the current kernel position, and passing the
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resulting values through some activation function such as ReLu, sigmoid, tanh, etc. The acti-

vation function is used to increase the capabilities of the network and allow the modeling of

non-linear transformations. In practice, more than one kernel is usually used, so the output of a

convolutional layer will have a depth equal to the number of used kernels. The spatial resolution

of the output depends on the type of convolution. Padding of the input, kernel size, and stride

are the factors that determine the spatial resolution of the output. Convolutional layers are often

paired with some type of pooling layer, such as maximum pooling. Usage of this layer helps

the network to focus on important information and reduces spatial resolution, which leads to a

smaller number of parameters in the deeper layers. Recently, many deep learning models also

used normalization layers, such as Batch Normalization [69]. By using the Batch Normaliza-

tion, the training is faster and more stable, but those merits are only seen if a large enough batch

size is used. Many state-of-the-art object detectors are based on CNN architectures. Variants

and working principles of the most popular CNN-based object detectors are described in the

following section.

3.2 Object detection architectures

Object detectors are often divided into two groups: (I) One-stage detectors and (II) Two-stage

detectors. Most of the detectors from these two groups rely on the detection of objects from a

dense grid of prede�ned rough guesses about the objects' position in the image. These rough

guesses are called anchors, priors, or default boxes. This concept is explained in more detail in

the rest of this section. However, there are also some different approaches for object detection

that do not rely on the usage of anchors such as CornerNet [70], CenterNet [71], FCOS [72],

and similar. While it is interesting to see a different idea for performing object detection, this

type of detector can hardly compete with anchor-based detectors in terms of precision and time

complexity trade-offs. Additionally, there has recently been an increase in the development of

computer vision models that are based on transformers [73] instead of CNNs. Several such

models were built speci�cally for object detection [74, 75] and achieved results comparable to

commonly used one-stage and two-stage CNN-based detectors. In this work, the focus will be

on the working principle of one-stage object detectors, since many object detectors of this type

achieve state-of-the-art results [76, 77] and these models are often applied both in industry and

research. An architecture of a CNN-based object detector is usually divided into three parts: (I)

feature extractor (backbone) (II) neck (III) detection head. A feature extractor is used to extract

important information from the image. This is done by applying some architecture with good

classi�cation abilities such as VGG [25], ResNet [78, 79], MobileNet [56, 80, 81], DenseNet

[82], Ef�cientNet [83], or some other. Improvements made in the image classi�cation task often

have a direct impact on the results for the object detection task. A better classi�cation model
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usually extracts better features and can be used to build more precise object detectors. Fully

connected layers from the classi�ers are discarded when reusing the classi�cation model for the

object detection backbone. Instead, the layers from the classi�er's feature extractor are passed

to the second building block of an object detector - the neck. The neck is used to combine high-

resolution feature maps and low-resolution feature maps. Spatial resolution is usually decreased

through the model by using maximum or minimum pooling layers or by performing convolu-

tions with strides larger than one. While lowering spatial resolution means the �ne details are

lost, the model is able to focus more on the semantic meaning of the inputted information. One

of the popular neck implementations is called Feature Pyramid Network (FPN) [45]. This idea

was used as a baseline for the development of many other approaches for combining feature

maps of different resolutions, such as PANet [84] and BiFPN [76]. Combining �ne-grained

details from earlier feature maps with semantic information from deeper layers improves the

network's performance and allows easier and more natural image analysis on different scales.

An illustration showing an object detector's building blocks is shown in Figure 3.1. After the

Figure 3.1: An illustration of object detector's main components.

multiscale features were extracted from the image using the backbone and neck of the model,

they need to be fed into a detection head that will perform the actual classi�cation and localiza-

tion of the objects. A detection head can perform object classi�cation and localization in one

step (one-stage detectors) or two steps (two-stage detectors). With two-stage detectors such as

the Faster-RCNN family [23, 85, 86, 87, 88], rough locations of the objects are �rst estimated.

This estimation is done by the Region Proposal Network (RPN) which relies on features ex-

tracted by the backbone, and a dense grid of initial rough guesses about the possible regions

of interest called anchors. Anchors are de�ned and placed in a way that covers the image with

tens of thousands of bounding boxes with varying aspect ratios and scales. This dense grid of

anchors is, together with the feature maps outputted by the neck, fed into the detection head as

21



Overview of deep learning-based object detection methods

Figure 3.2: An illustration of the data inputted to the detection head.

shown in Figure 3.2. Anchors that probably contain some object are separated by the RPN and

the shapes and locations of the selected anchors are re�ned by the network to obtain regions

of interest. These are just the class-agnostic areas of an image that have a higher probability

of containing an object. Regions of interest are then fed to a Region of Interest Pooling (ROI

Pooling) layer together with the feature maps from the backbone. ROI Pooling divides the re-

gion of interest into smaller sub-windows and performs a pooling operation in each of these

sub-windows. This layer is a special type of Spatial Pyramid Pooling (SPP) [89] layer, so the

outputted features are of �xed size regardless of the input size. Finally, the calculated features

are fed into branches for classi�cation and regression. These branches will re�ne the regions

of interest into the �nal predictions by discarding the regions without the object and �ne-tuning

the locations of regions that contain an object. The classi�cation branch determines the cat-

egory to which the detected objects belong. The described working principle corresponds to

the way the Faster-RCNN works. Some other two-stage detectors have a different architecture

and use slightly different approaches to perform object detection. The two-stage approach has

additional computational complexity compared to the one-stage detectors. Despite that, it was

for a long time a preferred approach in cases where accuracy was the deciding factor. Lately,

some problems that were present in the early one-stage object detectors were solved and this

allowed the one-stage object detectors to achieve state-of-the-art results [76, 77].

One stage detectors directly classify and localize objects in an image. This is again done

by having a dense grid of anchors (also called priors, or default boxes). The principle is the

same as the one used by the two-stage detector's RPN. The main difference is that for one-stage

detectors there is no additional re�nement, so the detection head must directly produce the �nal

prediction from the anchors. This includes both the classi�cation and localization tasks. An-

chors' shapes and sizes as well as their placement on top of the image are determined from the
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hyperparameters. This can have a huge impact on the model's performance. As seen in Equa-

tion 3.2 both the localization and the classi�cation losses used during the training depend on

the anchors that are selected during the training. The development of one-stage object detectors

took off with the introduction of SSD [31] and YOLO [90] architectures. Many state-of-the-art

models were later built by upgrading upon these architectures. Some examples that were created

by upgrading SSD are DSSD [91] RetinaNet [92], Re�neDet [93], and Ef�cientDet [76]. Ex-

amples of architecture that derive from YOLO include YOLOv2 [94], YOLOv3 [32], YOLOv4

[77], and YOLOv5 [95]. The improved versions of object detectors usually introduce ideas from

other related computer vision tasks, such as image classi�cation. For example, introducing lay-

ers from image classi�cation models such as Batch Normalization or using some novel data

augmentation techniques. Besides applying existing ideas to object detection, some publica-

tions also focus on redesigning the components of object detectors such as architecture's neck,

which was improved in Ef�cientDet. Despite the differences among these object detectors, their

working principle is similar. One-stage detectors all rely on predicting the locations and classes

from anchors. On a high level, this can be considered as a modernized and better-optimized

version of a traditional sliding window approach. For each window (anchor), the model needs

to predict whether it contains an object and if it does to which category it belongs. Furthermore,

the locations of objects are predicted as offsets relative to the corresponding anchors. The loss

function used in SSD architecture [31] is shown below to explain how the optimization process

is used to train one-stage object detectors. The overall loss function of a one-stage object de-

tector is usually expressed as a weighted sum of localization and classi�cation loss functions:

Lloc(x; l ;g) =
1
N

(Lcon f(x;c)+ a Lloc(x; l ;g)) (3.2)

where: xp
i; j = indicator for matching the i-th anchor box to the j-th ground truth box of class p

l = predicted bounding box

g = ground truth bounding box

a = weight of localization error

An example of the classi�cation loss function is the cross-entropy loss:

Lcon f(x;c) = �
N

å
i2Pos

xp
i; j log(ĉp

i ) �
N

å
i2Neg

log(ĉ0
i ) (3.3a)
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å pexp(cp
i )
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where: xp
i; j = indicator for matching the i-th anchor box to the j-th ground truth box of class p

c = predicted class con�dence

Localization error:

Lloc(x; l ;g) =
N

å
i2Pos

å
m2f cx;cy;w;hg

xp
i; jsmoothL1(lmi � ĝm

j ) (3.4a)
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ĝh
j = log(
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j
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i

) (3.4e)

where: xp
i; j = indicator for matching the i-th anchor box to the j-th ground truth box of class p

smoothL1 = smoothed L1 error

l = predicted bounding box

g = ground truth bounding box

d = anchor box

cx;cy = center coordinates of a bounding box

w;h = width and height of a bounding box

As it can be seen from the equations, both the localization and classi�cation losses depend on

chosen positive anchors. The chosen anchors are the ones for which the variable x has value

one. Usually, the positive anchors are the ones that overlap with the ground truth label by more

than some threshold. This overlap is calculated as intersection over union metric (Jaccard in-

dex). Additionally, if some ground truth label does not have an anchor that overlaps by more

than the de�ned threshold, an anchor that �ts the best to the ground truth is used (even if its

overlap is smaller than the threshold). Proper anchor shapes lead to more sampled anchors and

better initial guesses of the object appearances, and are thus very important hyperparameters.

In [94] the authors proposed the usage of K-means clustering on training annotations in order
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to compute good anchor shapes. There were also attempts to optimize anchors for other ob-

ject detectors [96, 97, 98]. Optimization of anchors is especially important in cases where the

objects are extremely elongated. If the objects have an extreme aspect ratio, default anchors

settings will not produce enough matched anchors for training and will thus negatively impact

the detector's performance. Extreme aspect ratios are common in ultrasonic images due to the

angle of data acquisition. When the probe transmits ultrasonic waves at large angles (for exam-

ple 60°-80°) the defects and other structures will appear elongated in the resulting image and

can have an aspect ratio greater than 10. This is why a signi�cant portion of the work in this

thesis was dedicated to the development of proper anchors design, placement, and matching.

Another option, that would implicitly solve this problem, is the generation of additional

training data. If due to imperfect anchor hyperparameters there aren't enough sampled positive

samples for training, the problem may partially be mitigated by generating more training im-

ages. This would in turn increase the total number of anchors that are used during the model

training. Additional training images can be generated using different approaches, but the usage

of Generative Adversarial Network (GAN) - based methods stands out due to their ability to

generate highly-realistic images. Generating additional training examples also helps the model

training when the dataset is small, since the model sees more variations during the training. The

described idea was used in multiple works [99, 100] to improve the object detector's perfor-

mance.

3.3 Object detection from sequences of images

Another goal of this work was the development of a method that can detect a defect on some

B-scan while using additional information from other images. The ultrasonic images can be

expanded to sequences which would increase the amount of information inputted into a model.

The sequences of ultrasonic B-scans can be formed in two ways: (I) stacking images acquired

for different scanning angles (horizontal axis in Figure 3.3) or (II) by stacking images in the

scanning direction (vertical axis in Figure 3.3). If the �rst option is used to create sequences,

object detection is somewhat similar to object detection in videos. The similarity stems from

the fact that the neighboring frames look alike, and some distant frames can in�uence predic-

tions made for some other frame. Modeling a long-term dependency between the frames can

thus be bene�cial. The second described way of creating a sequence is not so similar to the

video sequence. The neighboring B-scans can be substantially different, and the important in-

formation will always be contained only in the space close to the target B-scan. Modeling a

long-term relationship between the B-scans of the sequence is unlikely to yield any improve-

ment in detection. This use case is more similar to the analysis of medical images than the

analysis of videos. A thorough search of the relevant literature did not yield any research ar-
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Figure 3.3: When analyzing ultrasonic B-scan, additional context can be obtained by looking at the same
material cross-section from a different angle, or by looking at the neighboring material cross-sections.

ticles related to the analysis of sequences of ultrasonic testing B-scans. This is not surprising

since most of the researchers do not have a large enough dataset to even train a deep learning

model for image analysis, and expansion to 3D would require even more data. The inspiration

for the development of methods for that task can still be found in some other domains and tasks

that are somewhat related to this topic. As mentioned before, video analysis and medical data

analysis are two tasks that share some properties with the defect detection from sequences of

UT B-scans. An overview of methods from these areas is given below.

Methods for object detection in videos: When detecting an object from sequences of

images, several approaches can be used. One simple approach is to post-process independent

detection from each frame with an algorithm such as SeqNMS [101]. SeqNMS uses high-

scoring object detections to increase the scores of related weaker detections from the nearby

frames within the same video. Other options try to combine features from different frames to

improve the precision. In [102] the authors use a �ow-based approach to aggregate features

from different frames. The authors designed a network that estimates the �ow �eld and uses

it to propagate features calculated from sparse key frames to other frames. This is much faster

than calculating features for each frame by CNN. Another option that is often seen is the usage

of 3D convolutional layers [103, 104]. The authors of [103] proposed a new architecture, called

I3D, that was developed to take advantage of pretraining the model on a large-scale dataset

as it is commonly done for image classi�cation. Their model is built upon standard image

classi�cation architectures but with �lters and pooling kernels in�ated into 3D. Later works

(S3D) [104] showed that it is possible to replace many of the 3D convolutions with low-cost 2D

convolutions. The authors concluded that the 3D convolutions are more useful at the end of the

network, where they enable temporal modeling between high-level semantic features. This also

has the additional bene�t of making the network faster compared to the version that uses 3D
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convolutions at the beginning of the network. In [105] the authors propose a method that learns

to index into a long-term memory bank while performing object detection. The authors augment

the Faster-RCNN architecture by adding attention-based modules before the detection head.

This enables the model to incorporate features outputted by the region proposal network (RPN)

with the ones from the "memory bank". The combined features are then used to detect objects in

the current frame. The authors of [106] propose a Spatio-temporal Sampling Network (STSN)

that performs object detection on the current (reference) frame by using features calculated

from some other (supporting) frame. First, a CNN computes object-level features for each

video frame individually. Then, spatio-temporal sampling blocks are applied to the object-level

feature maps in order to sample relevant features from nearby frames. This part is done by

predicting a location offset from the combination of reference and support frame (target frame

and context), and then extracting the features from the supporting frame with a deformable

convolution. The sampled features are then aggregated into a single tensor, which is used as an

input to the detection network to produce �nal object detection results for the given reference

frame.

Ideas from the aforementioned works related to video analysis can be used as inspiration

when designing a method for UT B-scan sequence analysis. However, there are many differ-

ences between these two tasks, so the direct application of some method for video analysis

might not work that well for defect detection from sequences of UT B-scans. In video, there is

a temporal dimension with a strictly de�ned orientation of increment. Most of the methods for

object detection from the video are designed to work in real-time, which means that the future

frames can not be used for the analysis of the current frame. This is not the case for either of

the described ultrasonic sequences, since all of the B-scans can always be used to increase the

amount of inputted information. Also, the main problems encountered in object detection in

the video such as motion blur, video defocus, unusual poses, or object occlusions [106] do not

appear when analyzing sequences of UT images.

Methods for object detection in Medical data: A domain that is more similar to the one

investigated in this work is object detection from medical images. Unnatural images, small

datasets, irregular objects that are dif�cult to distinguish from the background are some com-

mon challenges found both in medical data analysis and UT data analysis. The authors of [107]

combined U-net and RetinaNet models to combine object detection with auxiliary semantic seg-

mentation task. The developed architecture was used for medical object detection from CT and

MRI data. The authors showed that additional training signals from the pixel-wise annotations

can successfully be used to improve the results. Tested object detectors were implemented to

work with both 2D and 3D input data. In [108] The authors designed a cascade framework

that �rst proposes regions or volumes of interest and then uses a CNN to classify all the can-

didates. The �rst part is designed in a way that maximizes sensitivity with the cost of higher
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false-positive calls. The false positives are then �ltered by the CNN that analyzes features ag-

gregated from randomly sampled sets of 2D or 2.5D views. The authors test their approach

on several medical datasets (sclerotic metastasis detection, lymph node detection, and colonic

polyp detection). A similar approach was later used in [109]. However, the approach introduced

in this work is fully three-dimensional. The candidate regions are selected by a U-net-inspired

two-stage detector Faster-R-CNN that was modi�ed to work in 3D. The false positives are then

reduced with a 3D DCNN. In [110] the authors propose a network that is able to incorporate

3D context when analyzing CT scans. Multiple neighboring slices are sent into a 2D detection

network to generate feature maps separately, which are then aggregated for �nal prediction. The

authors used R-FCN [87] as a starting point, and then make modi�cations necessary for it to

work with 3D context. This approach is similar to the approach used in Pub 5. In [111] the

authors develop a YOLO-based 2.5D fusion algorithm to localize individual 3D cells in densely

packed volumes. Their approach is based on the fusion of 2D detections from orthogonal planes

in 3D, which is then used to estimate the coordinates of the 3D bounding box. A similar ap-

proach was shown in [112] for the analysis of CT data. The authors propose a method that

localizes anatomical structures in 3D images by �rst determining their presence in 2D image

slices. In [113], the authors propose an optimized version of the SSD model for liver lesions

detection from multiphase CT data. The goal is to design a model that can use knowledge from

all the phases individually. This can not be accomplished by using standard convolutional lay-

ers, since the data distribution from each of the input phases is different. Instead, the authors

applied convolution with separate �lters for each phase and then concatenate the outputs into

the resulting feature map. The authors then inserted an additional 1x1 convolution before the

detection head to fuse the information from different phases.

While the overview of detection methods from medical data given here is not exhaustive, it

is possible to get an idea about the main research directions. Most of the methods rely on feature

aggregation extracted from 2D views and usage of additional context to improve the detection.

The reason why this is the proffered way has mostly to do with the re-usability of existing

architectures for image classi�cation and lack of data to properly train full 3D convolutional

networks. None of the mentioned methods for video analysis or medical data analysis were

directly used to analyze UT data, since there are some differences between these domains.

However, research works mentioned in this chapter served as an inspiration when designing a

network for defect detection from sequences of UT data.
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Chapter 4

Evaluating the performance of defect

detection methods

4.1 Ultrasonic testing dataset

To develop novel methods for the automated analysis of phased array ultrasonic testing (PAUT)

data, and to evaluate the performance of those methods, a dataset of such images must be

available. Unfortunately, there are currently no publicly available datasets of realistic PAUT

data. The only publicly available datasets are either arti�cially generated [24] or acquired with

a different ultrasonic testing setup [114, 115] instead of a phased array probe. We collected

the largest dataset of PAUT B-scans that was so far used in the literature in order to develop

and evaluate methods for automated analysis of ultrasonic images. A large dataset enables

the application of deep learning-based approaches and ensures the credibility of the achieved

results. The dataset was obtained by scanning several steel blocks with arti�cially placed defects

inside of them. The blocks were scanned with a phased array probe using the angles from 45°

- 79° with a two-degree increment. The blocks contained a total of 68 defects, and most of

them could be seen from various angles and scanning directions. This means that the same

defect appears on several B-scans, and its appearance slightly varies in each of those scans.

More than 4000 ultrasonic B-scans were collected and defects in those images were manually

annotated. More details about the dataset can be found in the publications attached to this thesis

(for example Pub 1). The methods proposed in this thesis were all developed and tested on

the same dataset in order to allow comparability among the used approaches. Our experiments

showed that the object detectors work a bit better when the pseudo-colored images are used as

an input instead of unprocessed grayscale images. This is why we used pseudo-colored images

in all publications except in Pub 3. Pub 3 uses a generative adversarial network to expand the

dataset of images for training and since the generation of grayscale images is easier, in that

work the original grayscale images were used for the experiments.
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4.2 Evaluation metrics

4.2.1 Accuracy, precision, recall

The evaluation metric used to numerically de�ne the performance of the model depends on the

granularity of the algorithm's output and the goals of the evaluation. In cases where an image

classi�cation method is applied to analyze ultrasonic images, it is natural to also adopt com-

monly used metrics for the evaluation of image classi�ers. For example, if an image classi�er

is applied to determine whether an ultrasonic B-scan has a defect or not, the accuracy metric

can be used to quantify performance. It is important that the dataset is balanced if this metric is

used. Accuracy is de�ned as:

accuracy=
TP+ TN

TP+ FP+ TN+ FN
(4.1)

where: TP = Number of true positives

TN = Number of true negatives

FP = Number of false positives

FN = Number of false negatives

Positive class is usually de�ned as a class of interest, so in this case, images containing defects

would be positive examples. Correctly classi�ed positive images are considered true positives.

Images containing defects that were classi�ed as normal images are called false negatives. Im-

ages that do not contain defects are negative examples. Correctly classi�ed such images are

called true negatives, and incorrectly classi�ed such examples are false positives. When taking

into consideration the domain where the methods for automated defect detection are applied,

one can conclude that false negatives are much more serious than false positives. This is why

a different metric such as precision and recall might be more suitable. The precision metric is

similar to accuracy, but focuses only on the positive samples. It measures the percentage of true

positives among all the examples that were classi�ed as positive examples:

precision=
TP

TP+ FP
(4.2)

Another important aspect of some method's performance is to numerically de�ne how many

of the examples belonging to the important (positive) class were successfully classi�ed. This

is what a recall metric is used for. The recall is determined by the percentage of the positive
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examples that some method was able to �nd from all of the positive examples:

recall =
TP

TP+ FN
(4.3)

4.2.2 Mean average precision

Optimizing independently one of the aforementioned metrics is easier than optimizing their

combination. However, a method that has a 100 % recall is useless if the models simply always

predict the positive class. This is why, in practice, we want to measure some overall metric

that captures several of the aforementioned metrics. A metric that considers both precision

and recall can be calculated as the area under the precision-recall curve (PR curve). When

generalizing the described metric for the task of object detection, some additional aspects must

be considered. First, the de�nition of true positives, false positives, true negatives, and false

negatives must be slightly altered since the bounding boxes must also be taken into account. In

order to de�ne a correct prediction, the overlap between the predicted bounding boxes and the

ground truth boxes must be quanti�ed. This is usually done by calculating the intersection over

union (IOU):

IOU = (4.4)

If the IOU is larger than some threshold and the class of the predicted object is correct, the

prediction is considered a true positive. If the predicted bounding box does not overlap enough

with the ground truth bounding box or the predicted class does not match the actual class, the

prediction is considered a false positive. Ground truth bounding boxes that do not have matched

predictions are regarded as false negatives. True negatives would be all the other possible

bounding boxes that can be found in the image that do not overlap with the annotated objects.

There can be an in�nite number of such boxes, so this value is usually discarded when analyzing

the object detection results. Alternatively, one can consider all the anchors that were correctly

classi�ed as the background class to be the true negatives. In practice, this would mean that

tens of thousands of correctly classi�ed negative anchors are considered as true negatives (if an

object detector works well). Since accuracy depends on the number of true negatives, it is not

an appropriate metric for evaluating object detection methods. Object detection is not limited

to the detection of only one type of object. It is much more common that the object detector

must be able to distinguish between multiple objects and to be able to localize all of them

in the image. To calculate the performance of an object detector for this task, the previously
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mentioned area under the PR curve metric can be expanded to work with multiple classes. A

mean average precision metric is used for this. It is calculated in the following way:

1. Sort prediction of a model by the con�dence and assign them to the matching ground

truth

2. Each prediction that has an IOU greater than some threshold (usually 0.5) and has a

correct class is matched to the ground truth.

3. The prediction is correct (true positive) only if the ground truth was not already assigned

to some other prediction. Otherwise, the prediction is considered a false positive.

The result of the described procedure is a list of predictions, both correct and wrong, that are

sorted by their con�dence. A precision-recall curve can be plotted by gradually taking examples

from the list. The recall will either increase or stay the same as more examples are taken from

the list. The precision can either increase or decrease, and usually the precision-recall curve

will have a zigzag shape depending on the number of TP and FP that are found in each of the

sampled lists. To reduce the in�uence of these small variations in precision, the PR curve needs

to be smoothed before calculating the average precision. This is done by replacing each of

the precision values with the maximum precision value to the right of the current value (future

precision values obtained for higher recall values). Illustrations of PR curves before and after

the smoothing is shown in Figure 4.1. The average precision (AP) is de�ned as the area under

the PR curve:

AP=
Z 1

0
p(r)dr (4.5)

where: r = recall

p(r) = smoothed precision-recall curve

The smoothed curve is more commonly used for the calculation of AP and in that case, the

equation can be written in another way. The average precision can be calculated by summing

the areas of rectangle surfaces underneath the smoothed curve formed by sampling the curve in

points where the maximal precision was decreased:

AP= å
k2K

(rk+ 1 � rk)pinter(rk+ 1) (4.6)

where: r = recall

pinter = smoothed precision-recall curve

K = list of indices for which the decrease of maximal precision occurred

Once the average precision is calculated for each class, a mean average precision (MAP)
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(a) before smoothing

(b) after smoothing

Figure 4.1: Precision recall curve

can be calculated. This metric is obtained by calculating the average performance across all

the classes. This metric is the most common metric for the comparison of object detectors on

popular public challenges such as PASCAL VOC[61], COCO[59], and ImageNet[60]. Since

defect detection in B-scans is an equivalent task to standard object detection, MAP is suitable

to determine the performance of defect detectors.

4.2.3 Probability of detection

Since the topic of this thesis is the application of object detection methods for defect detection

of ultrasonic testing images, it is important to mention another evaluation approach called the

probability of detection (POD) [26, 27, 116]. This metric is more tightly related to the NDE do-

main, and it is often used to determine the overall reliability of the whole inspection procedure.

This includes the hardware for acquisition as well as the analysis of the data done by the human

inspectors. However, a unique way of POD approach does not exist, instead, a number of evalu-

ation methods that are distinguished for example by the signal inputs or used statistical methods
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[116] are used in practice. The drawback of the previously described MAP metric is that it does

not take into account the defect sizes. A defect's size is an important factor, since the severity

of the problem that can be caused by the material failure depends primarily on the dimensions

of the found defect. When a method for automated defect detection is used, it analyzes all the

angles, so a defect's size in pixels can vary a lot. A defect with a smaller physical size can

sometimes appear bigger on a B-scan compared to a defect with a smaller physical size. Also,

if the test dataset is small, it is possible to achieve great results even though the actual perfor-

mance on new cases might signi�cantly vary. For example, if only one defect is contained in the

test set, a model can achieve a perfect score but the model's performance on new cases is highly

uncertain. Probability of detection (POD) is a tool based on the advanced statistical analysis

of the obtained detection results, used to calculate the reliability of inspection procedures with

suf�cient certainty. An example of this metric is hit/miss POD. It is calculated from the list of

�aws, their sizes, and hit/miss label indicating whether a �aw was successfully detected or not.

This type of POD curve is plotted by placing the �aw sizes on the x-axis and the corresponding

probability of detections on the y-axis. A logit/probit curve can then be �tted to the data and

the interval for a speci�c con�dence level can be found. A point from this curve will deter-

mine the smallest �aw a procedure can reliably detect. A commonly used threshold isa90=95

[24, 28, 117]. This means that the probability of detection must be over 90% with the con�dence

of the obtained results of at least 95%. An example of such a curve is shown in Figure 4.2. The

plot shows that the smallest �aw that can reliably be found is 2.1 mm because this value on the

x-axis is obtained for the y-axis value corresponding to a 90% probability of detection in the

lower bound of the 95% con�dence curve. The main drawback to this evaluation metric is the

large number of �aws that are needed to perform the analysis. Also, the threshold discussion

and complex relationships between the NDE response and the defect might make it impossible

to use POD analysis in a regular way [116]. If the hit/miss POD analysis is performed for an

image classi�cation method that analyzes individual B-scans as done in some previous works

[24, 28] a criterion for hit/miss is straightforward. If the model correctly classi�es a B-scan

with a defect, the prediction is regarded as a hit, if the model falsely classi�es such B-scans it

would be considered a miss. However, in our use case where the PAUT data is analyzed with

object detectors, there are many additional criteria that need to be determined. How much does

the predicted bounding box need to overlap with the ground truth to mark a detection as a hit?

How to ensure that the ground truth bounding boxes are completely correct and would not be

annotated differently by another inspector? If a defect appears on multiple B-scans, how many

of its appearances need to be detected for it to be considered a hit? What to do with borderline

cases where the defect's signal is barely visible, and a human inspector would also not be able

to make a decision without looking at additional data? These questions make the usage of POD

very challenging, and they ultimately prevented the usage of POD analysis in the publications
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Figure 4.2: Illustration of the probability of detection (POD) curve. The intersection of the black dashed
lines determines the �aw size that has a probability of detection of 90 % with the 95% con�dence (a90=95)

in this thesis. Instead, a mean average precision was used, but with some additional analysis

done in Pub 1 that showed the reliability of the proposed methods and enabled the readers to

clearly see how many of the defect's appearances were detected.
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Chapter 5

Main scienti�c contributions of the thesis

The main scienti�c contributions of this thesis are: (I) deep learning-based method for detection

of defects with extreme aspect ratio with results disseminated in [Pub1], [Pub2], and [Pub3];

(II) deep learning-based method for defect detection by simultaneous analysis of multiple ultra-

sound images with results disseminated in [Pub4], and [Pub5].

5.1 Deep learning-based method for detection of defects with

extreme aspect ratios

Deep learning object detectors achieve good results when applied to general object detection

on natural scenes. The techniques like transfer learning [118] and data augmentation [119], al-

lowed researchers to leverage the good performance of these detectors and apply them to other

domains. However, the application of deep learning object detectors for defect detection in ul-

trasonic images was hindered by the lack of realistic datasets. A thorough search of the relevant

literature did not yield any research articles before [30] that applied deep learning object detec-

tors for defect detection from ultrasonic images. Usage of deep learning is fairly new in this

domain, and the lack of public datasets prevents realistic comparison of the published methods.

As stated earlier, the focus of this thesis is on the application and development of one-stage

object detectors for defect detection from ultrasonic images. The �rst step in this process was

to establish baseline results and compare several of the top-performing object detections on a

large database of ultrasonic B-scans. This was one of the contributions of [Pub1]. A thorough

evaluation enabled comparison among the existing methods and gave insight into the reliabil-

ity of object detection methods when applied in UT data analysis. An additional contribution

of this work was a procedure for calculating the anchors' hyperparameters. In Section 3.2 it

was shown that anchors' design has a huge impact on object detector training, and the proper

setup of anchors can have a positive effect on the detector's performance. The importance of

choosing the right anchors is highlighted when the objects that need to be detected have extreme
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aspect ratios, which is common in phased array ultrasonic (PAUT) images. If the default anchor

settings are used, the training can be dif�cult and the models sometimes do not even converge.

However, if the procedure from [Pub1] is used to calculate anchors' hyperparameters, an im-

provement of almost 6% is achieved compared to the default model. Other valuable insights,

that revealed new research directions, were also presented in this publication. It was shown

that the smaller networks outperform bigger ones, which indicated that further improvement

might be achievable if more data was available or even simpler architecture was used. These

two hypotheses were explored in the follow-up works ([Pub3], and [Pub2]).

Since the acquisition of additional ultrasonic data is very expensive, in [Pub3] the additional

data was synthetically generated. While some previous works arti�cially generated UT data,

the used approaches were fairly simple and relied on copy-pasting of the defects into empty

background images. A better quality of the generated images can be achieved if a generative

adversarial network (GAN) is used. Additionally, if those images are to be used for improving

the precision of a deep learning object detector, it is useful to make certain modi�cations of

the standard GAN architecture. In [Pub3] it was shown that the GAN with additional object

detection discriminator network can be used to generate realistic new B-scans. Moreover, the

generated B-scans can be used as additional data when training an object detector and improve

the mean average precision by almost 6 %.

The second mentioned insight, regarding the possible bene�ts achieved by the simpli�cation

of the used neural network, was explored in [Pub2]. A novel encoder-decoder-based feature ex-

tractor was designed and implemented while keeping in mind insights provided in [Pub1]. A

small number of parameters enables easier training on a small dataset and reduces computa-

tional complexity. The skip connections used in the network minimize the loss of information

that was noticed in [Pub1] by comparing the results of object detectors on various input im-

ages resolution. Furthermore, the feature network and the detection head of the architecture

proposed in [Pub2], were designed to enable dense placement of anchors on the x-axis of fea-

ture maps. This modi�cation was proposed because some anchors calculated with the procedure

from [Pub1] had aspect ratio so extreme that the used anchors did not overlap and properly cover

the entire image. A DefectDet architecture proposed in [Pub2] achieved additional improve-

ments of both precision and inference time compared to the baseline Ef�cientDet-D0 model. It

was also shown that the proposed network outperforms other state-of-the-art architecture such

as YOLOv5 in terms of mean average precision.
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5.2 Deep learning-based method for defect detection by si-

multaneous analysis of multiple ultrasound images

Due to the nature of the acquired PAUT images, useful information for detecting defects is

often found across multiple B-scans. It is expected from the inspectors viewing monotone

sequences of images to often rewind and get a better view of suspicious signals. The inspectors

con�rm their decision by looking at the same area of the material from various angles and

scanning directions. To ensure the reliability of the UT inspection, the data must be acquired

from various scanning angles and all of the data must be inspected. This prevents the cases

where the transmitted ultrasonic waves propagate parallel to a �at defect, which would result

in no re�ection of the waves. This would ultimately mean the signal for this defect would not

be seen, and it would be missed during the analysis. The data is usually acquired for dozens

of angles. The dataset in this thesis, for example, has angles ranging from 45° up to 79° with

a two-degree increment. This also means a huge amount of similar data must be analyzed,

regardless of the way the analysis is performed (manual or automated).

In [Pub4] a novel approach for simultaneous analysis of UT B-scans acquired from different

scanning angles is proposed. The method from this publication is proposed to reduce the time

needed for the overall automated analysis by merging the data acquired for different scanning

angles. The method relies on the attention mechanism that determines which of the input angles

are the most useful, and then the images from those angles are given higher importance during

the data fusion. Since the images from different angles are fused inside the model, the automated

inspection can be performed in a number of steps equal to the number of the unique cross-

section. This means a signi�cant (� 15 times) reduction of time needed for the analysis in a

real-life setting.

A different approach for analyzing sequences of ultrasonic images was presented in [Pub5].

The goal of the methods proposed in this publication was to improve the precision of a defect

detection model by using the additional information. The methods from [Pub1],[Pub2],[Pub3]

all rely on independent B-scan analysis. However, this strategy focuses only on the defect's

visual similarity and ignores the "temporal" consistency. The temporal consistency, in this case,

refers to the dynamical alteration of the defect's signal across neighboring cross-sections of

the material. In [Pub5], it was �rst shown that the simple expansion of the input does not

work well and that a more advanced approach is needed. Two novel methods were then pro-

posed to enable a one-stage object detector to leverage the additional context available when

the sequence of consecutive B-scan is analyzed. This was implemented by passing the con-

secutive B-scans through a feature extractor and feature pyramid network, and then combining

the obtained feature maps. For each input image, �ve feature maps of different resolutions are

calculated. Calculated feature maps contain high-dimensional information about the content
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in each of inputted B-scans. These feature maps are then combined using either a standard

convolutional layer or a combination of the convolutional layer with a long short-term memory

layer (ConvLSTM). Both of the proposed approaches work well and lead to a signi�cant mean

average precision improvement compared to the standard Ef�cientDet model.
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3126-3134, doi: 10.1109/TUFFC.2021.3081750.

Pub 2 D. Medak, L. Posilovíc, M. Subašíc, M. Budimir, S. Lon�caríc, ”DefectDet: a

deep learning architecture for detection of defects with extreme aspect ratios in

ultrasonic images”,Neurocomputing, vol. 473, Feb. 2022, pp. 107-115, doi:

10.1016/j.neucom.2021.12.008.

Pub 3 L. Posilovíc, D. Medak, M. Subašíc, M. Budimir, S. Lon�caríc, ”Generative ad-

versarial network with object detector discriminator for enhanced defect detection

on ultrasonic b-scans”,Neurocomputing, vol. 459, Oct. 2021, pp. 361-369, doi:

10.1016/j.neucom.2021.06.094.

Pub 4 D. Medak, L. Posilovíc, M. Subašíc, T. Petkovíc, M. Budimir, S. Lon�caríc, ”Rapid

Defect Detection by Merging Ultrasound B-scans from Different Scanning Angles”,

in Proc. of the 12th International Symposium on Image and Signal Processing and
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2021, doi: 10.1109/JSEN.2021.3134452.

40



Chapter 7

Author's contribution to the publications

The results presented in this thesis are based on the research carried out during the period of

2018-2022 at the University of Zagreb Faculty of Electrical Engineering and Computing, mostly

as a part of the research project SMART UTX: Smart modular system for ultrasound diagnostics

in extreme conditions. This research was co-funded by the European Union through the Euro-

pean Regional Development Fund, under the grant KK.01.2.1.01.0151 (Smart UTX). The thesis

includes �ve publications written in collaboration with the coauthors of the published papers.

The author's contribution to each paper consists of the conceptualization of novel methods,

data curation and preparation, software implementation, performing the required experiments,

results analysis, text writing, and presentation.

[Pub1] In the paper"Automated Defect Detection From Ultrasonic Images Using Deep

Learning" the author proposed usage of deep learning object detectors for analysis of UT im-

ages following conclusions from several related works about the superiority of deep learning

approaches compared to traditional approaches. An important part of the work was to collect

and annotate the largest database of real ultrasonic B-scans that was until then used in the lit-

erature. This was done to ensure the credibility of reported results. Upon manual annotation

of over 4000 images, the author implemented several state-of-the-art object detectors and com-

pared their performances. A novel method inspired by previous work was proposed to calculate

networks' hyperparameters related to anchors' shapes. Using this method, a signi�cant im-

provement of mean average precision (MAP) was achieved. Finally, to prove the reliability of

the proposed method, a thorough evaluation was performed.

[Pub2] In the paper"DefectDet: a deep learning architecture for detection of defects

with extreme aspect ratios in ultrasonic images"the author proposed a novel deep learning

architecture for defect detection in ultrasonic B-scans. This work was done as a continuation of

[Pub1], and solutions to several previously noticed shortcomings were proposed. First, to tackle

the problem of a small dataset, a novel simpler feature extractor based on an encoder-decoder

network was proposed and implemented by the author. A novel feature extractor improved
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mean average precision while simultaneously reducing inference time. Additionally, the new

backbone reduced the loss of information when analyzing images of smaller resolution. The

author also proposed a novel detection head that was designed to improve the performance of

the detector when detecting objects with extreme aspect ratios, such as defects in ultrasonic

B-scans. It was shown that both of these components independently lead to improved MAP, but

the merits were even bigger once the two components were merged into a new deep learning

network that was named DefectDet.

[Pub3] In the paper"Generative adversarial network with object detector discrimina-

tor for enhanced defect detection on ultrasonic b-scans"a different approach was used to

tackle the problem of small datasets of UT B-scans. A generative adversarial network (GAN)

was used to arti�cially expand the dataset by generating B-scans that contained defects on po-

sitions de�ned by the input masks. Generated images were then used in combination with the

original image to improve the MAP of the YOLOv3 object detector. In order to develop GAN

that generates images that are useful for object detection training, YOLOv3 was used as an ad-

ditional discriminator during the GAN training. The author's contribution to this work includes

the development of a new object detector, performing experiments, and paper reviewing and

editing.

[Pub4] In the paper"Rapid Defect Detection by Merging Ultrasound B-scans from Dif-

ferent Scanning Angles"a novel approach for simultaneous analysis of B-scans acquired at

different angles is proposed by the author. The main motivation behind analyzing images from

multiple scanning angles is to improve the precision or to reduce the overall needed time for

data analysis. Even when the UT data analysis is performed in an automated fashion using some

algorithm that is run on the computer, it can still take a long time if the amount of data is huge.

This is often the case with phased array data, where the scans are acquired from many different

angles. The author proposed a new model that uses an attention mechanism to determine which

of the input angles the object detectors should focus on. The input images are then merged in a

way that preserves information from scans for which the model previously determined that are

more important. It was shown that the proposed approach analyses UT data achieves similar

precision and it is around 15 times faster compared to the traditional approach where the images

are analyzed independently.

[Pub5] In the paper"Deep learning-based defect detection from sequences of ultrasonic

B-scans" the author proposed two novel methods for analyzing sequences of UT B-scans. The

proposed architectures were designed to enable object detectors to look at the surrounding area

of some B-scan. Human inspectors also do this when performing the analysis since it enables

them to con�rm their decision. The defect usually spans across several B-scans that display

neighboring cross-sections of the inspected material. However, a simple expansion of the deep

neural network input to work with several neighboring B-scans does not lead to improvement.
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More complex approaches that are based on high-dimensional feature maps merging are needed

and their usage improves MAP. The author designed and implemented two of such methods and

experimentally proved the bene�ts of their application.
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Conclusions and future directions

Currently used procedures for ultrasonic testing data analysis still rely mostly on the knowledge

and experience of the human inspectors. It takes years of practice and training for a human oper-

ator to acquire the skills needed to perform the analysis of the UT data. Even then, the decision

made by humans can be subjective and prone to error, especially in cases where a large amount

of data needs to be analyzed, which leads to fatigue of the inspectors. The procedure used by

the inspectors can not be explicitly expressed as a set of rules, which makes the development of

methods for automated UT data analysis dif�cult. The development of methods for automated

analysis �ourished recently due to many improvements made in the deep learning area. Deep

learning methods are very promising in this �eld since they can implicitly learn to detect defects

by training on large amounts of labeled images. Their generalization abilities are a lot better

than those of the traditional approaches and in some works, their performance was on par with

the human-level performance. However, directly applying the existing deep learning architec-

tures for this task will not enable the usage of the full potential of deep learning models. In a

series of publications attached to this thesis, novel deep learning object detectors were designed,

taking into account the application domain. A thorough evaluation was performed to prove the

merits of each individual solution. The novel models, components, design choices, and training

procedures that are proposed in these publications can also be used jointly. This enables the

creation of the ultimate UT defect detector, which is lightweight, fast, reliable, works well with

the objects of extreme aspect ratios, and is able to use additional context when detecting defects.

While the contributions presented in this thesis bring the automated analysis of UT data

to a new level, there is still room for progress. The advances of deep learning methods in

the NDE domain will probably come by improving the three building blocks of deep learning-

based defect detection: the data, the used method, and the evaluation procedure. In this work,

calibration blocks were scanned to acquire the UT data that was used for the development and

evaluation of automated analysis methods. There are many other common use cases where

deep learning could be applied such as the analysis of bolts, welds, pipelines, etc. Also, the
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information inputted into an automated analysis model can be enriched by providing the actual

positions in 3D space, or by using the data acquired from different directions (skews). Another

option is to fuse the UT data with the data obtained by some other NDE technique. The second

direction of improvement should be focused on the new method. This can be either in the form

of introducing new tasks such as anomaly detection, next frame prediction, 3D data generation,

and similar, or by applying a novel method for some existing task like the usage of transformers

networks for detection of defects. Further research in this area will enable the application

of state-of-the-art deep learning models and techniques and can lead to further improvement.

Finally, to objectively measure the achieved improvement, a suitable metric must be considered.

Currently used metrics such as ROC, MAP, and POD all have some disadvantages when used

independently to evaluate an automated method for image analysis in the NDE domain. This

was also noticed by other researchers and with the development of NDE 4.0 proper evaluation of

AI-based solutions will require more attention. In this thesis, the MAP was used for evaluation,

but additional metrics such as POD should be calculated and the proposed methods should be

tested in a real environment before they can be used to assist the human experts in the �eld

inspections.
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