Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1199353

Artificial intelligence models for the prediction of NOx emissions in gas turbines


Glučina, Matko; Mrzljak, Vedran; Poljak, Igor; Car, Zlatan
Artificial intelligence models for the prediction of NOx emissions in gas turbines // International Student Scientific Conference (Ri-STEM 2022)
Rijeka, 2022. str. 33-36 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1199353 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Artificial intelligence models for the prediction of NOx emissions in gas turbines

Autori
Glučina, Matko ; Mrzljak, Vedran ; Poljak, Igor ; Car, Zlatan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Skup
International Student Scientific Conference (Ri-STEM 2022)

Mjesto i datum
Rijeka, Hrvatska, 08.06.2022. - 09.06.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Artificial intelligence ; Gas Turbine Power Plants ; Machine Learning ; NOX ; Regression Prediction

Sažetak
Gas emissions from power plants and gas turbines use fossil fuels as their energy source and have a detrimental effect on people and the environment, one of the harmful gases obtained by burning fossil fuels is Nitrogen Oxide which can have harmful effects on humans. This research boils down to the use of artificial intelligence algorithms from the scikit-learn library that can potentially predict future NOx values from a gas turbine. The research was conducted on a publicly available data set from a gas turbine in Turkey. Linear models Linear regression, Ridge, Stochastic gradient descent, ExtraTreesRegessor, GradientBoostingRegressor, and RandomForestRegressor were used, with the best result obtained using GradientBoostingRegressor, with R2 and MSE being 0.9 and 12.60. The onclusion is that a simple approach could not provide sufficient quality results for the use of the model.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
EK-EFRR-KK.01.1.1.02.0023 - Razvojno-edukacijski centar za metalsku industriju – Metalska jezgra Čakovec (Car, Zlatan, EK - KK.01.1.1.02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Zadru,
Sveučilište u Rijeci

Profili:

Avatar Url Vedran Mrzljak (autor)

Avatar Url Matko Glučina (autor)

Avatar Url Zlatan Car (autor)

Avatar Url Igor Poljak (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Glučina, Matko; Mrzljak, Vedran; Poljak, Igor; Car, Zlatan
Artificial intelligence models for the prediction of NOx emissions in gas turbines // International Student Scientific Conference (Ri-STEM 2022)
Rijeka, 2022. str. 33-36 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Glučina, M., Mrzljak, V., Poljak, I. & Car, Z. (2022) Artificial intelligence models for the prediction of NOx emissions in gas turbines. U: International Student Scientific Conference (Ri-STEM 2022).
@article{article, author = {Glu\v{c}ina, Matko and Mrzljak, Vedran and Poljak, Igor and Car, Zlatan}, year = {2022}, pages = {33-36}, keywords = {Artificial intelligence, Gas Turbine Power Plants, Machine Learning, NOX, Regression Prediction}, title = {Artificial intelligence models for the prediction of NOx emissions in gas turbines}, keyword = {Artificial intelligence, Gas Turbine Power Plants, Machine Learning, NOX, Regression Prediction}, publisherplace = {Rijeka, Hrvatska} }
@article{article, author = {Glu\v{c}ina, Matko and Mrzljak, Vedran and Poljak, Igor and Car, Zlatan}, year = {2022}, pages = {33-36}, keywords = {Artificial intelligence, Gas Turbine Power Plants, Machine Learning, NOX, Regression Prediction}, title = {Artificial intelligence models for the prediction of NOx emissions in gas turbines}, keyword = {Artificial intelligence, Gas Turbine Power Plants, Machine Learning, NOX, Regression Prediction}, publisherplace = {Rijeka, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font