Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1199336

Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow


Ban, Branko; Stipetić, Stjepan
Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow // Structural and multidisciplinary optimization, 65 (2022), 175, 11 doi:10.1007/s00158-022-03263-4 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1199336 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow
(Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow)

Autori
Ban, Branko ; Stipetić, Stjepan

Izvornik
Structural and multidisciplinary optimization (1615-147X) 65 (2022); 175, 11

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Electric machine, Design feasibility, Robust, Material, Region, Shape object

Sažetak
In most cases, the search for the optimal design of an electrical machine is closely related to its 2D radial cross section. When optimizing a 2D cross section, special attention must be paid to the geometry and to the definition of the parameters along with their boundaries. Even if properly bounded, complex geometries generated by optimization algorithms can lead to geometrically infeasible candidates. These cannot be manufactured because they contain generally undesirable geometric relationships between air, magnets, and steel. Different commercial and open- source finite element analysis (FEA) design tools treat the infeasible designs differently. The results vary from simulation stop to successful FEA calculation of the infeasible candidate, which wastes time by producing useless data. To prevent the infeasible designs from entering the optimization competition and possibly appearing incorrectly as optimal solutions, and to reduce optimization time, it is important to capture the infeasible designs during optimization. Moreover, the FEA tool requires a precisely determined interior point to assign the material to each closed region (air, steel, epoxy, magnet...). This can be very challenging for complex geometries. To avoid creating geometry or material regions that are not valid, this paper proposes a novel robust methods for checking feasibility and determining interior points on geometric shape objects. In this paper, the proposed method is applied to the optimization of electrical machines.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Stjepan Stipetić (autor)

Avatar Url Branko Ban (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi link.springer.com

Citiraj ovu publikaciju:

Ban, Branko; Stipetić, Stjepan
Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow // Structural and multidisciplinary optimization, 65 (2022), 175, 11 doi:10.1007/s00158-022-03263-4 (međunarodna recenzija, članak, znanstveni)
Ban, B. & Stipetić, S. (2022) Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow. Structural and multidisciplinary optimization, 65, 175, 11 doi:10.1007/s00158-022-03263-4.
@article{article, author = {Ban, Branko and Stipeti\'{c}, Stjepan}, year = {2022}, pages = {11}, DOI = {10.1007/s00158-022-03263-4}, chapter = {175}, keywords = {Electric machine, Design feasibility, Robust, Material, Region, Shape object}, journal = {Structural and multidisciplinary optimization}, doi = {10.1007/s00158-022-03263-4}, volume = {65}, issn = {1615-147X}, title = {Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow}, keyword = {Electric machine, Design feasibility, Robust, Material, Region, Shape object}, chapternumber = {175} }
@article{article, author = {Ban, Branko and Stipeti\'{c}, Stjepan}, year = {2022}, pages = {11}, DOI = {10.1007/s00158-022-03263-4}, chapter = {175}, keywords = {Electric machine, Design feasibility, Robust, Material, Region, Shape object}, journal = {Structural and multidisciplinary optimization}, doi = {10.1007/s00158-022-03263-4}, volume = {65}, issn = {1615-147X}, title = {Robust feasibility verification and region inner- point detection algorithms for geometric shape objects applied to electric machine optimization workflow}, keyword = {Electric machine, Design feasibility, Robust, Material, Region, Shape object}, chapternumber = {175} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font