Pregled bibliografske jedinice broj: 1198854
Random Forest and Grey methodology in dynamic portfolio selection
Random Forest and Grey methodology in dynamic portfolio selection // Artificial Intelligence and Big Data for Financial Risk Management Intelligent Applications / Metawa, Noura ; Hassan, M. Kabir ; Metawa, Saad (ur.).
London : Delhi: Routledge, 2022. 8, 22 doi:10.4324/9781003144410-8
CROSBI ID: 1198854 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Random Forest and Grey methodology in dynamic
portfolio selection
Autori
Škrinjarić, Tihana ; Vlah Jerić, Silvija
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Artificial Intelligence and Big Data for Financial Risk Management Intelligent Applications
Urednik/ci
Metawa, Noura ; Hassan, M. Kabir ; Metawa, Saad
Izdavač
Routledge
Grad
London : Delhi
Godina
2022
Raspon stranica
ISBN
9780367700560
Ključne riječi
portfolio selection ; investment strategies ; Random Forest ; Grey methodology
Sažetak
This chapter deals with dynamic portfolio selection. The main methodological approaches are the Machine Learning (ML) method Random Forest and the Grey Relational Analysis (GRA) within Grey System Theory. Although many approaches of forecasting and portfolio selection exist today, this chapter combines approaches which have been proven in previous literature as being efficient and robust. Previous research deals with one or another approach, but here we use the forecasts from fandom forests to rank stock indices via the Grey approach in order to make the decision on the structure of the portfolio. The empirical analysis includes selected stock market indices, for the period 2015-2020. Firstly, daily data is used for the ML part and forecasting. Next, the out of sample forecasts are used to construct weekly data for the portfolio return and risk. Trading strategies are simulated so that comparisons can be made between those which are based on the approaches of this chapter and those which are usual benchmarks from portfolio theory. Since the results are promising, future research and applications could take into consideration such an approach.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Ekonomija
POVEZANOST RADA
Ustanove:
Ekonomski fakultet, Zagreb