Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1197297

Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy


Čikeš, Maja; Sanchez-Martinez, Sergio; Claggett, Brian; Duchateau, Nicolas; Piella, Gemma; Butakoff, Constantine; Pouleur, Anne Catherine; Knappe, Dorit; Biering-Sørensen, Tor; Kutyifa, Valentina et al.
Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy // European journal of heart failure, 21 (2019), 1; 74-85 doi:10.1002/ejhf.1333 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1197297 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy

Autori
Čikeš, Maja ; Sanchez-Martinez, Sergio ; Claggett, Brian ; Duchateau, Nicolas ; Piella, Gemma ; Butakoff, Constantine ; Pouleur, Anne Catherine ; Knappe, Dorit ; Biering-Sørensen, Tor ; Kutyifa, Valentina ; Moss, Arthur ; Stein, Kenneth ; Solomon, Scott D. ; Bijnens, Bart

Izvornik
European journal of heart failure (1388-9842) 21 (2019), 1; 74-85

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Machine learning ; Heart failure ; Personalized medicine ; Echocardiography ; Cardiac resynchronization therapy

Sažetak
Aims: We tested the hypothesis that a machine learning (ML) algorithm utilizing both complex echocardiographic data and clinical parameters could be used to phenogroup a heart failure (HF) cohort and identify patients with beneficial response to cardiac resynchronization therapy (CRT). Methods and results: We studied 1106 HF patients from the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT) (left ventricular ejection fraction 30%, QRS 130ms, New York Heart Association class II) randomized to CRT with a defibrillator (CRT-D, n=677) or an implantable cardioverter defibrillator (ICD, n=429). An unsupervised ML algorithm (Multiple Kernel Learning and K-means clustering) was used to categorize subjects by similarities in clinical parameters, and left ventricular volume and deformation traces at baseline into mutually exclusive groups. The treatment effect of CRT-D on the primary outcome (all-cause death or HF event) and on volume response was compared among these groups. Our analysis identified four phenogroups, significantly different in the majority of baseline clinical characteristics, biomarker values, measures of left and right ventricular structure and function and the primary outcome occurrence. Two phenogroups included a higher proportion of known clinical characteristics predictive of CRT response, and were associated with a substantially better treatment effect of CRT-D on the primary outcome [hazard ratio (HR) 0.35 ; 95% confidence interval (CI) 0.19-0.64 ; P=0.0005 and HR 0.36 ; 95% CI 0.19-0.68 ; P=0.001] than observed in the other groups (interaction P=0.02). Conclusions: Our results serve as a proof-of-concept that, by integrating clinical parameters and full heart cycle imaging data, unsupervised ML can provide a clinically meaningful classification of a phenotypically heterogeneous HF cohort and might aid in optimizing the rate of responders to specific therapies.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Zagreb,
Klinički bolnički centar Zagreb

Profili:

Avatar Url Maja Čikeš (autor)

Poveznice na cjeloviti tekst rada:

doi onlinelibrary.wiley.com

Citiraj ovu publikaciju:

Čikeš, Maja; Sanchez-Martinez, Sergio; Claggett, Brian; Duchateau, Nicolas; Piella, Gemma; Butakoff, Constantine; Pouleur, Anne Catherine; Knappe, Dorit; Biering-Sørensen, Tor; Kutyifa, Valentina et al.
Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy // European journal of heart failure, 21 (2019), 1; 74-85 doi:10.1002/ejhf.1333 (međunarodna recenzija, članak, znanstveni)
Čikeš, M., Sanchez-Martinez, S., Claggett, B., Duchateau, N., Piella, G., Butakoff, C., Pouleur, A., Knappe, D., Biering-Sørensen, T. & Kutyifa, V. (2019) Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. European journal of heart failure, 21 (1), 74-85 doi:10.1002/ejhf.1333.
@article{article, author = {\v{C}ike\v{s}, Maja and Sanchez-Martinez, Sergio and Claggett, Brian and Duchateau, Nicolas and Piella, Gemma and Butakoff, Constantine and Pouleur, Anne Catherine and Knappe, Dorit and Biering-S\orensen, Tor and Kutyifa, Valentina and Moss, Arthur and Stein, Kenneth and Solomon, Scott D. and Bijnens, Bart}, year = {2019}, pages = {74-85}, DOI = {10.1002/ejhf.1333}, keywords = {Machine learning, Heart failure, Personalized medicine, Echocardiography, Cardiac resynchronization therapy}, journal = {European journal of heart failure}, doi = {10.1002/ejhf.1333}, volume = {21}, number = {1}, issn = {1388-9842}, title = {Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy}, keyword = {Machine learning, Heart failure, Personalized medicine, Echocardiography, Cardiac resynchronization therapy} }
@article{article, author = {\v{C}ike\v{s}, Maja and Sanchez-Martinez, Sergio and Claggett, Brian and Duchateau, Nicolas and Piella, Gemma and Butakoff, Constantine and Pouleur, Anne Catherine and Knappe, Dorit and Biering-S\orensen, Tor and Kutyifa, Valentina and Moss, Arthur and Stein, Kenneth and Solomon, Scott D. and Bijnens, Bart}, year = {2019}, pages = {74-85}, DOI = {10.1002/ejhf.1333}, keywords = {Machine learning, Heart failure, Personalized medicine, Echocardiography, Cardiac resynchronization therapy}, journal = {European journal of heart failure}, doi = {10.1002/ejhf.1333}, volume = {21}, number = {1}, issn = {1388-9842}, title = {Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy}, keyword = {Machine learning, Heart failure, Personalized medicine, Echocardiography, Cardiac resynchronization therapy} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font