Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1197277

Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging


Sanchez-Martinez S, Camara O, Piella G, Cikes M, González-Ballester MÁ, Miron M, Vellido A, Gómez E, Fraser AG, Bijnens B
Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging // Frontiers in cardiovascular medicine, 8 (2022), 765693, 11 doi:10.3389/fcvm.2021.765693 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1197277 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging

Autori
Sanchez-Martinez S, Camara O, Piella G, Cikes M, González-Ballester MÁ, Miron M, Vellido A, Gómez E, Fraser AG, Bijnens B

Izvornik
Frontiers in cardiovascular medicine (2297-055X) 8 (2022); 765693, 11

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial intelligence ; cardiovascular imaging ; clinical decision making ; deep learning ; diagnosis ; machine learning ; prediction

Sažetak
The use of machine learning (ML) approaches to target clinical problems is called to revolutionize clinical decision-making in cardiology. The success of these tools is dependent on the understanding of the intrinsic processes being used during the conventional pathway by which clinicians make decisions. In a parallelism with this pathway, ML can have an impact at four levels: for data acquisition, predominantly by extracting standardized, high- quality information with the smallest possible learning curve ; for feature extraction, by discharging healthcare practitioners from performing tedious measurements on raw data ; for interpretation, by digesting complex, heterogeneous data in order to augment the understanding of the patient status ; and for decision support, by leveraging the previous steps to predict clinical outcomes, response to treatment or to recommend a specific intervention. This paper discusses the state-of-the-art, as well as the current clinical status and challenges associated with the two later tasks of interpretation and decision support, together with the challenges related to the learning process, the auditability/traceability, the system infrastructure and the integration within clinical processes in cardiovascular imaging.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Zagreb,
Klinički bolnički centar Zagreb

Profili:

Avatar Url Maja Čikeš (autor)

Poveznice na cjeloviti tekst rada:

doi www.frontiersin.org pubmed.ncbi.nlm.nih.gov

Citiraj ovu publikaciju:

Sanchez-Martinez S, Camara O, Piella G, Cikes M, González-Ballester MÁ, Miron M, Vellido A, Gómez E, Fraser AG, Bijnens B
Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging // Frontiers in cardiovascular medicine, 8 (2022), 765693, 11 doi:10.3389/fcvm.2021.765693 (međunarodna recenzija, članak, znanstveni)
Sanchez-Martinez S, Camara O, Piella G, Cikes M, González-Ballester MÁ, Miron M, Vellido A, Gómez E, Fraser AG, Bijnens B (2022) Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging. Frontiers in cardiovascular medicine, 8, 765693, 11 doi:10.3389/fcvm.2021.765693.
@article{article, year = {2022}, pages = {11}, DOI = {10.3389/fcvm.2021.765693}, chapter = {765693}, keywords = {artificial intelligence, cardiovascular imaging, clinical decision making, deep learning, diagnosis, machine learning, prediction}, journal = {Frontiers in cardiovascular medicine}, doi = {10.3389/fcvm.2021.765693}, volume = {8}, issn = {2297-055X}, title = {Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging}, keyword = {artificial intelligence, cardiovascular imaging, clinical decision making, deep learning, diagnosis, machine learning, prediction}, chapternumber = {765693} }
@article{article, year = {2022}, pages = {11}, DOI = {10.3389/fcvm.2021.765693}, chapter = {765693}, keywords = {artificial intelligence, cardiovascular imaging, clinical decision making, deep learning, diagnosis, machine learning, prediction}, journal = {Frontiers in cardiovascular medicine}, doi = {10.3389/fcvm.2021.765693}, volume = {8}, issn = {2297-055X}, title = {Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging}, keyword = {artificial intelligence, cardiovascular imaging, clinical decision making, deep learning, diagnosis, machine learning, prediction}, chapternumber = {765693} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font