Pregled bibliografske jedinice broj: 1195804
COVID-19 disease severity prediction model based on blood biomarkers: a machine learning approach
COVID-19 disease severity prediction model based on blood biomarkers: a machine learning approach // 1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) - book of abstracts / Filipović, Nenad (ur.).
Kragujevac: Univerzitet u Kragujevcu, 2022. 67, 4 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1195804 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
COVID-19 disease severity prediction model based on blood biomarkers: a machine learning approach
Autori
Blagojević, Anđela ; Šušteršič, Tijana ; Lorencin, Ivan ; Baressi Šegota, Sandi ; Milovanović, Dragan ; Baskić, Danijela ; Baskić, Dejan ; Car, Zlatan ; Filipović, Nenad ; Zdravković, Nataša ; Mijailović, Sara ; Zdravković, Nebojša
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) - book of abstracts
/ Filipović, Nenad - Kragujevac : Univerzitet u Kragujevcu, 2022
ISBN
978-86-81037-71-3
Skup
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)
Mjesto i datum
Kragujevac, Srbija, 19.05.2022. - 20.05.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
COVID-19 ; machine learning ; biomarkers ; modeling
Sažetak
The use of artificial intelligence, especially machine learning methods in creating models that will be applied in clinical practice has reached its peak with the appearance of the COVID-19 pandemic. This study aims to determine the severity of the clinical condition of COVID-19 patients based on blood marker analysis. The study used data from 60 COVID- 19 patients treated at the Clinical Center Kragujevac. The research methodology includes the selection of the most important laboratory parameters as well as the classification of patients depending on them using methods of supervised learning, regression and classification. With an accuracy of 90%, three parameters were selected that can mostly indicate the severity of the patient's condition, which are: lactate dehydrogenase (LDH), C-reactive protein (CRP), white blood cells (WBC). Laboratory biomarkers such as LDH, CRP and WBC may have an impact on predicting outcomes and help classify patients into an appropriate group based on symptoms.
Izvorni jezik
Hrvatski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Temeljne medicinske znanosti, Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Nenad Filipović
(autor)
Zlatan Car
(autor)
Sandi Baressi Šegota
(autor)
Ivan Lorencin
(autor)