Pregled bibliografske jedinice broj: 1195803
Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics
Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics // 1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) / - (ur.).
Kragujevac: Sveučilište u Kragujevcu, 2022. str. 1-8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1195803 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparison of Image Augmentation Techniques in
Urinary
Bladder Cancer Diagnostics
Autori
Lorencin, Ivan ; Baressi Šegota, Sandi ; Glučina, Matko ; Anđelić, Nikola ; Štifanić, Daniel ; Španjol, Josip ; Car, Zlatan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)
/ - Kragujevac : Sveučilište u Kragujevcu, 2022, 1-8
Skup
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)
Mjesto i datum
Kragujevac, Srbija, 19.05.2022. - 20.05.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
CNN, data set augmentation, GAN, urinary bladder cancer
Sažetak
Urinary bladder cancer is one of the most common malignancies in the urinary tract. One of the key challenges in medical image analysis is the curation of sufficiently large data sets. For these reasons, in this paper, two different approaches for image data set augmentation are presented. One approach is based on a pipeline that consists of various geometrical variations of original images. The second approach is based on the utilization of Generative Adversarial Networks (GAN). Such an approach is used to artificially create new images that are used to increase the volume of the training data set. The performances were investigated by using urinary bladder cancer data set. From the achieved results, it can be concluded that by applying image augmentation techniques, significantly higher results are achieved. Furthermore, it can be concluded that by applying GAN-based augmentation, even higher results ara achieved
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
EK-EFRR-KK.01.2.2.03.0017 - Centar kompetencija 3LJ (CEKOM 3Lj) (Zdolec, Nevijo; Jerković, Igor; Čož-Rakovac, Rozelinda, EK ) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
Profili:
Josip Španjol
(autor)
Zlatan Car
(autor)
Nikola Anđelić
(autor)
Sandi Baressi Šegota
(autor)
Matko Glučina
(autor)
Daniel Štifanić
(autor)
Ivan Lorencin
(autor)