
Vol.:(0123456789)1 3

KN - Journal of Cartography and Geographic Information
https://doi.org/10.1007/s42489-022-00102-w

Automated 3D Urban Landscapes Visualization Using Open Data
Sources on the Example of the City of Zagreb

Adrian Komadina1  · Željka Mihajlović1 

Received: 30 December 2021 / Accepted: 1 March 2022
© Deutsche Gesellschaft für Kartographie e.V. 2022

Abstract
Geographical location visualization is important to create virtual environments when performing simulations. This study
uses publicly available data sources to create three-dimensional (3D) views of geographical locations, focusing on the city
of Zagreb as a case study, and presents an automated solution that integrates data from four different sources to achieve this.
Publicly available data sources (OpenStreetMap, Google Maps Elevation API, MapBox Static Images API) were used, and
GIS Zrinjevac which is unique to Zagreb. Based on these sources, individual 3D objects were generated and displayed virtu-
ally in the form of an interactive 3D map. The proposed solution attempts to balance the differing levels of detail achieved
using other techniques. The solution was implemented in the form of an application created using the Unity game engine.
The results were analyzed to evaluate the solution’s validity and the created application’s performance. The analysis showed
that the total execution time dependence is quadratically polynomial to the amount of retrieved data, and linear to the num-
ber of height map points. Examining the application’s update rate showed that the buildings and individual models used for
polygon and point data had the greatest impact. Finally, possible improvements, alternative approaches, and advantages and
disadvantages of the proposed solution are compared with other techniques used in this research area.

Keywords  Data visualization · Cartographic data · Virtual environment · OpenStreetMap · GIS Zrinjevac · Google maps
elevation API

 *	 Adrian Komadina
	 adrian.komadina@fer.hr

 *	 Željka Mihajlović
	 zeljka.mihajlovic@fer.hr

1	 Department of Electronics, Microelectronics, Computer
and Intelligent Systems, Faculty of Electrical Engineering
and Computing, University of Zagreb, Unska 3,
10000 Zagreb, Croatia

http://orcid.org/0000-0003-1243-7149
http://orcid.org/0000-0002-4866-1399
http://crossmark.crossref.org/dialog/?doi=10.1007/s42489-022-00102-w&domain=pdf

	 KN - Journal of Cartography and Geographic Information

1 3

Automatisierte 3D-Visualisierung urbaner Landschaften unter Verwendung offener
Datenquellen am Beispiel der Stadt Zagreb

Zusammenfassung
Die Visualisierung geographischer Standorte ist wichtig, um virtuelle Umgebungen zur Durchführung von Simulationen zu
erstellen. Diese Studie verwendet öffentlich verfügbare Datenquellen, um dreidimensionale (3D) Ansichten geographischer
Standorte abzuleiten, wobei der Schwerpunkt auf der Stadt Zagreb als Fallstudie liegt. Die Studie liefert eine automatisierte
Lösung, um Daten aus vier verschiedenen Quellen zu integrieren. Verwendet wurden öffentlich verfügbare Datenquellen
(OpenStreetMap, Google Maps Elevation API, MapBox Static Images API) sowie GIS Zrinjevac, welches nur in Zagreb
verfügbar ist. Auf der Grundlage dieser Quellen wurden individuelle 3D-Objekte generiert und in einer interaktiven 3D-Karte
virtuell dargestellt. Die vorgeschlagene Lösung versucht, die unterschiedlichen Level of Details auszugleichen, die bei
Verwendung anderer Techniken erreicht werden. Die Lösung wurde in Form einer Anwendung implementiert, die mit der
Game-Engine Unity erstellt wurde. Um die Lösung im Ganzen fachgerecht zu bewerten sowie die Leistungsfähigkeit der
entwickelten Anwendung zu überprüfen, wurden die Ergebnisse analysiert. Dabei zeigte sich, dass die Ausführungszeit im
Ganzen quadratisch-polynomial abhängig ist von der Menge der abgerufenen Daten. Zudem ist sie linear abhängig zur Anzahl
der Höhenkartenpunkte. Bei der Untersuchung der Aktualisierungsrate der Anwendung zeigte sich, dass die Gebäude sowie
die einzelnen Modelle, die für Polygon- und Punktdaten verwendet wurden, den größten Einfluss hatten. Am Ende werden
mögliche Verbesserungen, alternative Ansätze sowie die Vor- und Nachteile der vorgeschlagenen Lösung mit anderen in
diesem Forschungssegment eingesetzten Techniken verglichen.

1  Introduction

It is possible to find cartographic data faster and easier today
than ever before. Such data are easy to process and display
in a two-dimensional (2D) space, but displaying this in a
three-dimensional (3D) space is a more challenging task as
many attributes are insufficient or difficult to visualize. A
2D display is sometimes convenient, but does not often pro-
vide a complete picture of the observed area. Figure 1 shows
a comparison of map representations for the same area in
2D and 3D. Although current technologies offer numerous
data sources, many are not publicly available for download.
As a result, the focus of this study is on publicly available

data sources, of which OpenStreetMap (OSM) is the most
important. Other sources used include Google Maps Eleva-
tion API, MapBox Static Images API, and GIS Zrinjevac.

Modeling of 3D areas, especially cities, is an important
topic in geomatics and can be achieved using various tech-
niques. Three-dimensional modeling techniques are auto-
matically classified as automatic, semi-automatic and man-
ual, and also by data input methods based on laser scanning
and photogrammetry (Singh et al. 2013a). A model making
use of aerial photogrammetry is currently one of the most
popular in the visualization of cities, and it is possible to
create a semi-automatic model of city visualization using
such datasets (Buyukdemircioglu et al. 2018). In addition

Fig. 1   Comparison of (A) 2D (source: https://​www.​google.​com/​maps) and (B) 3D map representations of the urban area of Paris (source: https://​
devel​opers.​google.​cn/​maps/​docum​entat​ion/​gaming/​overv​iew_​musk?​hl=​zh-​cn)

https://www.google.com/maps
https://developers.google.cn/maps/documentation/gaming/overview_musk?hl=zh-cn
https://developers.google.cn/maps/documentation/gaming/overview_musk?hl=zh-cn

KN - Journal of Cartography and Geographic Information	

1 3

to aerial photogrammetry, satellite photogrammetry is also
commonly used (Kocaman et al. 2006) to provide examples
of modeling 3D cities from high-quality satellite imagery
using various software tools. Although it is possible to create
high-quality city models using satellite and aerial imagery,
these images are often not accessible to everyone. Therefore,
a method of close-range photogrammetry has been devel-
oped, in which a 3D model of the city can be created from
a series of images taken with an ordinary handheld digital
camera (Singh et al. 2013b) or using a recorded video and
extracting the necessary images from it (Singh et al. 2014).

In addition to photogrammetry, laser scanning may be
used, either from air or from the ground. Terrestrial laser
scanners can be used for automated 3D modeling of urban
environments (Bostrom et al. 2006), and light detection
and ranging (LiDAR) technology has been shown to pro-
duce photorealistic virtual representations of large cities at
relatively low costs (Jovanović et al. 2020). However, the
main drawbacks of LiDAR are the large amount of data
obtained by this technique, which needs to be analyzed
and processed (Zhou and Neumann 2008), and the limited
resolution of the samples near the edges of the surfaces
(Verma et al. 2006). LiDAR also performs poorly under
certain weather conditions, such as high cloud cover and
heavy rain. Additionally, good results are not obtained in
areas with highly reflective surfaces (Verma et al. 2006).
In contrast, LiDAR’s advantages are the fast acquisition of
data with high precision, direct measurement of the depth
component of objects (Verma et al. 2006) and independ-
ence from daylight. Because the image obtained by LiDAR
contains many artifacts, this technique is primarily used in
cases where there is emphasis on photorealistic representa-
tion or aesthetic impression; polygonal model representation
is used where the visualization is created only as a basis for
further simulations. In such situations, geometric inaccu-
racies are undesirable. Because the techniques mentioned
above involve certain visualization problems, to improve and
increase the accuracy of the representation itself, combina-
tions of the described techniques are most often used today,
which we also call hybrid methods. Thus, it is possible to
combine aerial images with cadastral maps to increase the
accuracy of the created model (Flamanc et al. 2003) or to
combine aerial images, LiDAR, and total stations to obtain
a 3D model of the city (Yang and Lee 2019).

CityGML is one of the most popular data formats used for
city visualization, and is designed to source and exchange
data to visualize urban areas (Ohori et al. 2015, 2018). In
this format, cities are characterized by their level of detail
(LOD); although a higher level of detail is better for creat-
ing a view, it should be noted that most applications and
models only use the LOD1 level of detail. Based on this, the
implementation in this study will reach the LOD2 level of
detail. Because we know that the CityGML format is very

complex and CityGML data are difficult to find, this study
uses the OSM data format. This format can be converted
to the CityGML detail formats LOD1 and LOD2 relatively
easily (Goetz 2013).

When it comes to a data source itself, such as OSM, it is
important to note that the data obtained may be incomplete
and/or incorrect because of the way it is collected. This is
because many contributors do not adhere to recommenda-
tions on attributes for objects given during participation,
either due to insufficient knowledge or a lack of interest
(Stančić et al. 2014). Because the OSM database is incom-
plete, many studies have assessed the quality of OSM data
in specific areas (Fan et al. 2014; Girres and Touya 2010).
The accuracy and completeness of OSM data, when only
buildings are considered, for the Republic of Croatia varies
from place to place. In the city of Zagreb, the accuracy of the
city center data is close to 100%, whereas on the city edges,
it is closer to 50% (Stančić et al. 2014). By combining the
OSM dataset with other sources, it is possible to eliminate
problems such as insufficient or incorrect elevation data of
objects; for example, elevation data can be found via satellite
imagery (Girindran et al. 2020).

The applications of visualization can be divided into non-
visualization cases (where the creation of 3D models and
the performance of 3D spatial operations are not required)
and visualization cases (where the 3D model itself is a very
important component of the use case and its use would not
make sense without it) (Biljecki et al. 2015). The modeling
of cities is most encountered in the context of 3D geospatial
location visualization because it is the most challenging,
and, accordingly, attracts the most attention from research-
ers and the most concrete applications for such research can
be found. The use of 3D city models created by different
visualization techniques can be divided into four categories:
planning and design, infrastructure and facilities manage-
ment, commerce and marketing, and promotion and learning
of information about cities (Shiode 2000).

Concrete applications of landscape visualization in three
dimensions can be found in the development of 3D naviga-
tion systems (Sharkawi et al. 2008), urban land manage-
ment in the form of reducing land consumption (Ross 2011),
and urban development planning as a tool that allows city
planners to easily insert proposed buildings into existing 3D
environments (Isikdag and Zlatanova 2009) in the simulation
of flooding in coastal areas to promote awareness among
residents of the dangers of such situations (Yang 2016).
In Biljecki et al. (2015), 29 different cases were identified
where 3D city models would be useful.

This study seeks to use data available from selected
sources to create the most accurate representation of any
geographic area in three dimensions. First, the data were
retrieved and processed. Each extracted piece of informa-
tion was accompanied by a specific graphical representation

	 KN - Journal of Cartography and Geographic Information

1 3

with a description of the advantages and disadvantages of
such a representation. The territory representation was
implemented using the Unity engine, which in turn used a
scripting system based on the C# programming language and
publicly available object models. The developed application
contained a simple user interface through which it is possible
to enter geolocation parameters in the form of latitude and
longitude values. After displaying the resulting visualiza-
tion, the user could move around the created 3D map.

This study is divided into several sections, of which
Sect. 2 provides an overview of existing work and pro-
gress in the geomatics field. Section 3 describes the data
sources used in more detail and considers their availability
and impact on the visualization of the selected area. It also
provides insights into the geographic area that the research-
ers primarily considered when undertaking this study. In
turn, Sect. 4 specifically describes how the mapped data
was represented and the visualization issues the researchers
encountered. Section 5 uses statistical methods to show the
impact of different data groups and datasets on the perfor-
mance of the proposed application. A final overview of the
topic and the implementation achieved in this study is given
in Sect. 6, along with suggestions for possible improvements
and future work.

2 � Related Work

The introduction of this study refers to work in the area of
3D surface modeling without specifically addressing the
researchers’ topic or implementation proposed in this paper.
This section looks at several research papers that use OSM
as their main data source.

Not all works examined are oriented towards the genera-
tion of an entire city visualization, and some focus only on
a part of a city. Wang and Zipf (2017) focused on the visu-
alization of buildings over OSM, more specifically using the
extended IndoorOSM, achieving the LOD4 level of detail as
per the CityGML standard. According to Nuhn et al. (2012),
the focus of this work is even more specific, as it only inves-
tigates the generation of landmarks; essentially, it examines
which features classify a building as a landmark and shows
how these attributes can be extracted from the OSM data.

Existing research has also focused on visualization crea-
tion for the purpose of simulations. For example, Dallmeyer
et al. (2013) demonstrated that traffic simulations could be
performed using OSM maps. In addition, Hadimlioglu and
King (2019) describe a simple visualization procedure to
simulate water extent in an area in the case of flooding. For
the purpose of this study, the authors limited themselves
to the LOD0 and LOD1 levels of detail within the Cit-
yGML specification. Further, in addition to the OSM data
itself, elevation information obtained via the Shuttle Radar

Topography Mission (SRTM) global map was used, and
visualization implemented with OpenGL.

Many studies have also used elevation information from
other sources in combination with OSM data. For example,
Over et al. (2010) used publicly available elevation infor-
mation provided by the SRTM. The suitability and quality
of the OSM data were discussed in Over et al.’s research,
in addition to generation. Girindran et al. (2020) also used
open satellite elevation data to describe a methodology for
generating low-cost 3D city models. Another work that uses
exclusively developed routines and open-source libraries to
visualize virtual 3D city models in real time is Singla and
Padia (2021), which uses imagery from high-resolution sat-
ellites and high-resolution digital elevation models, in addi-
tion to OSM.

However, Joling’s (2017) work most closely matches this
study, in terms of topic and implementation. Joling describes
the process of visualizing geographic locations with OSM
using the Unity drive. In addition to OSM, a global SRTMv3
elevation map is used by Joling, while the terrain is textured
using the tool Maperitive.

Over the years, many 3D terrain visualization tools have
been developed that can be run in a web browser, such as
OSMBuildings (https://​osmbu​ildin​gs.​org), which displays
only buildings, and F4Maps (https://​demo.​f4map.​com),
which produces a visualization down to the level of LOD2
detail, which is also the target of this work. However, the
latter tool does not have information on height; therefore,
the visualization itself is simplified. The tool OSM2World
(http://​osm2w​orld.​org) has a similar level of detail, but still
has the same drawbacks as the previously mentioned tool.
Desktop solutions are also available, such as JOSM (https://​
josm.​opens​treet​map.​de), but these only provide a 2D repre-
sentation of a map. In addition to the aforementioned solu-
tions, there are software development packages (SDKs) for
the Unity engine that use datasets for visualization. The most
well known among them is that from Google, the Maps SDK
for Unity.

Compared with other research in this area, this study will
focus on the trade-off between photorealism and abstraction,
that is, the lack of a large amount of detail. Figure 2 (below)
shows a comparison between a city visualization obtained
by aerial photogrammetry (Buyukdemircioglu et al. 2018)
and a visualization produced by the web tool OSMBuildings.
The image shows that the use of photogrammetry and laser
scanning techniques introduces certain instabilities in terms
of object geometry, but also produces visual improvements
in contrast to a polygonal representation of the data. One
would never be able to store and display as much informa-
tion in a polygonal representation, as is available through
other techniques. That said, a geometrically accurate model
is sometimes more important than the details. This is evident
in cases where the created representation was later used in

https://osmbuildings.org
https://demo.f4map.com
http://osm2world.org
https://josm.openstreetmap.de
https://josm.openstreetmap.de

KN - Journal of Cartography and Geographic Information	

1 3

this study as a model for event simulation, where accurate
simulation calculations are required. A compromise between
the described approaches would be useful in the representa-
tion of urban areas, to later perform geographic and urban
planning analysis or navigation displays in situations where
accurate route calculations are needed, as well as a visually
effective representation for a better user experience.

3 � Data Used and Study Area

The basis of any 3D map is the surface on which details are
to be represented. The terrain is usually not simply a flat sur-
face but depends on the elevation map of a particular area. In
this study, information about the elevation map was obtained
from the Google Maps elevation API. This simple appli-
cation interface was used to retrieve information about the
elevation of a location on the Earth’s surface, as elevation
data are available for almost all locations, including those in
seas and oceans where the elevation is negative. All eleva-
tion values obtained through this service were expressed in
meters (m) with respect to the local mean sea level. Working
with the described application interface was manifested by
sending an HTTP request in the URL that contains infor-
mation about the location under examination for an eleva-
tion value. In addition to elevation, it is desirable to texture
the terrain with a satellite image, and details that were not
available from other data sources were covered by satellite
texture. The MapBox Static Images API, supported by the
MapBox GL server, was used to retrieve satellite images.

Major usage restrictions and unavailability of map data
around the world have led to the creation of OpenStreetMap.
The OSM Project was created in 2004 with the primary goal
of creating a public and free map of the world that also had
the ability to edit it (Girres and Touya 2010). Today, OSM
has more than seven million users who work together to
improve the overall system (Madubedube et al. 2021). These

users help to improve the OSM using aerial imagery, GPS
devices, and simple maps to maintain and validate an accu-
rate and up-to-date cartographic database. The collected
information is publicly and freely accessible, which was
the main reason that OSM was chosen as the primary data
source for this study. OSM uses a topological data structure
composed of four basic elements:

•	 Node: a point with geographic coordinates intended to
indicate a feature without size.

•	 Way: an ordered list of nodes that may represent a linear
or polygonal object.

•	 Relation: an ordered list of nodes, paths, or relations
whose purpose is to represent the relationship between
the existing nodes and paths.

•	 Tag: a tag is a key-value pair used to store metadata
about objects on a map.

Map data can be downloaded for an area in the form of
an.osm file and an XML file with a limited set of tags.

Finally, it should be mentioned that an alternative to this
method of retrieving OSM data is to use already static files.
However, a major drawback of this approach is that it is
necessary to know in advance the country in which the area
that must be visualized is located. However, if this informa-
tion is available, one would not need to retrieve or process
the OSM data every time. Subsequently, this file could be
easily processed using some of the available command tools,
such as Osmosis, to extract a specific subset of information.

Although OSM provides a wide range of information,
from which data can be extracted for 3D representation, it
is quite general; as a result, the amount of information it
provides for some areas is small. A data source called GIS
Zrinjevac (https://​gis.​zrinj​evac.​hr) was therefore used to
visualize the Zagreb area. This additional data source repre-
sents the green space cadastre of the city of Zagreb and con-
tains information on three types of data: shrubs, trees, and

Fig. 2   Comparison of the visualization of the city obtained by (A) aerial photogrammetry (Buyukdemircioglu et al., 2018) and (B) OSMBuild-
ings web tool (Source: https://​osmbu​ildin​gs.​org)

https://gis.zrinjevac.hr
https://osmbuildings.org

	 KN - Journal of Cartography and Geographic Information

1 3

public urban equipment (e.g., benches, tables, trash cans,
fountains, playground equipment). GIS Zrinjevac allows its
users to view the data on an interactive 2D map; however,
to use this data, one must find a way to retrieve it. Look-
ing more closely at Internet traffic, it was noted that each
new map view sends a specific HTTP request to the server
with the type of data to be retrieved. The server’s response
to this request includes the data structure with the required
information.

This study focuses on the capital and largest city of the
Republic of Croatia, Zagreb. The city of Zagreb is located
near a geographical position of 45° 50' N and 15° 58' E in
northwestern Croatia. Zagreb is situated on a predominantly
uneven terrain of approximately 641 km2 with the lowest
point being 122 m and the highest point being 1,035 m above
sea level. The average altitude is 158 m, and the estimated
population is approximately 800,000, with most buildings
located in the lowlands. As we have already described, the
additional data source GIS Zrinjevac is available exclusively
for this city; therefore, we will base the display and perfor-
mance evaluation on the geographical area it covers. The
visualization is, of course, automated, so it is possible to
display any chosen geographical location, but we omit the
details included in the mentioned data source.

4 � Methodology

Following the described data sources used to implement the
visualization, this section describes how the retrieved data
were processed and adapted for further use. A brief descrip-
tion of the procedures used to display 2D and 3D elements
on the map is also described; the general workflow of the
data visualization process described in this section is shown
in Fig. 3 below.

4.1 � Data Processing and Terrain Generation

A terrain was created as a first step, using the Google Maps
Elevation API data source as a basis for displaying addi-
tional details within the visualization. The terrain’s dimen-
sion was determined using a method to calculate the distance

between two points in meters, based on their coordinates in
the EPSG:4326 system. Because one corner of the terrain
aligned with the origin of the scene coordinate system and
the terrain extended along the x-and z-coordinate axes in
the positive direction, the increase in the x-coordinate rep-
resented a greater length and an increase in the z-coordinate
represented a greater width.

Thereafter, the terrain created was modeled by its eleva-
tion data, the information of which was obtained from the
Google Elevation API source described earlier. It should be
emphasized that it is not possible to specify the elevation
for each point of the terrain in Unity, but it is necessary
to specify the height map with a predefined resolution in
advance; the elevation can then be specified for each point
of this map. For the resolution of the height map, one of
several predefined options could be chosen (between 33 × 33
and 4097 × 4097), where the product was the number of uni-
formly distributed points in the height map. Thus, it was
necessary to send a request to the server for each point in the
network. Because the application interface had a limit on the
number of locations for which it sent a response, it was not
possible to request all points simultaneously. The authors
sent a request to the server for each row of the height map;
that is, for each latitude increment. Note that the Google
Elevation API was not completely free, but its usage was
determined by the number of HTTP requests sent. Figure 4
shows a comparison of the created terrain with two different
height map resolutions. On the left of Fig. 4, terrain created
with a resolution of 65 × 65 is seen, which had a cost of 65
HTTP requests, while, on the right, terrain with a resolution
of 257 × 257 and a cost of 257 requests is seen.

Another way to obtain the elevation of an area is to use
satellite images (Hadimlioglu and King 2019; Joling 2017).
The difference in elevation in the downloaded image is
determined by the contrast of the image; thus, the lighter
parts indicate a higher elevation, and the darker parts indi-
cate a lower elevation. The disadvantage of this method is
that the data obtained by these processes are relative, since
an absolute value of the height is not available, only its rela-
tive ratio. However, its advantage is its independence from
Internet access and server services, as well as being able
to obtain a continuous bandwidth of altitude information

Fig. 3   Flow chart of the general workflow in the data visualization process described in this paper

KN - Journal of Cartography and Geographic Information	

1 3

without sending a large number of HTTP requests, which
significantly increases implementation time. As a hybrid
method, the use of satellite imagery should be empha-
sized, with the retrieval of two pieces of information via
the Google elevation API to determine the absolute values
of all other points in the terrain based on these values and
relationships from the imagery.

OSM data are processed using the primitives specified
in the OSM dataset description or tag-and-store objects
that are displayed in a virtual environment within the C#
programming language. In this process, it is necessary to
map the retrieved geographic coordinates from the OSM
dataset, onto their positions in the scene. This is done by
calculating the difference between the retrieved geographic
coordinates and the minimum coordinates, and the amount
of deviation in the scene space. Data about trees, shrubs, and
urban equipment were extracted from the source GIS Zrin-
jevac. Because this data source was based on the reference
coordinate system EPSG:3857, and all other data sources
used were based on the system EPSG:4326, it was neces-
sary to convert the edge coordinates to the above system.
Locations obtained by calling a method that converts a given
location expressed in latitude and longitude to a location in
meters were sent to the GIS Zrinjevac server. The location
of the data obtained from this source was first stored in the
EPSG:3857 system and later converted to the EPSG:4326
system, to be consistent with other data. To obtain additional
information about trees and urban equipment for each data-
set, an additional HTTP request was sent.

4.2 � Data Visualization

The terrain created in this study is a satellite image. To
achieve this, it was necessary to texture the terrain using
terrain layers. The texture grid was set at a resolution of
4096 × 4096 pixels; this is the maximum resolution allowed

in Unity (the higher this value, the more precise the texturing
and the more accurate the applied image). The image was
simply connected to an appropriate terrain layer and applied
to all the points in the texture grid.

The data represented as 2D surfaces on the created terrain
are roads, and the data from the OSM dataset represented
a surface, such as building land, grassy areas, paved areas,
and earth surfaces.

To visualize surfaces, a suitable algorithm was developed,
the idea of which was to apply the texture intended to repre-
sent this surface to the entire area covered by it. The first step
in the execution of the algorithm was to find the positions on
the texture grid of all stored reference vertices located inside
the path structure. The bounding box was determined from
these positions. By traversing all the points of this box, the
authors checked whether the point was within the polygon
and within the boundaries of the terrain. Based on this, it
was determined that the surface layer should be applied to
this point in the texture grid. A slightly more complicated
texturing procedure related to the visualization of parking
lots, where, in addition to the texture of the surface, the
white lines that made up the parking lots also had to be
placed.

For the algorithm used to generate the roads, the width of
the road was first determined based on the number of lanes.
In addition, data on the width of a lane were needed, but
this data are not available in OSM; this value was therefore
estimated depending on the importance of the road. The ref-
erence nodes that made up the path structure were unevenly
distributed along the path; therefore, the values between
them had to be interpolated. Because integer values had
to be interpolated between the tiles of the texture grid, the
Bresenham algorithm was used. The direction in which part
of the road between the two plotted nodes extended was also
determined. This determined direction was used to calculate
the number of adjacent tiles of the grid that the researchers

Fig. 4   Comparison of terrain
created with A 65 × 65 and B
257 × 257 heightmap resolution

	 KN - Journal of Cartography and Geographic Information

1 3

wanted to texture. For this reason, the determined road width
was divided by the length or width of a tile, depending on
the axis for which the direction was determined. Finally,
alternating road layers of asphalt and white paint were drawn
to represent the lines on the road.

One limitation of this approach is the resolution of the
texture grid. Because the maximum resolution is limited, it
was assumed that for a larger selected area, the area of each
tile that made up the grid would increase. Thus, for an area
of 1 km × 1 km, one tile covers an area of 0.06 m2, while for
an area of 20 km × 20 km, the same tile covers approximately
24 m2. Therefore, when representing data by texturing over
large areas, necessary accuracy may have been lost. As a
possible solution to this problem, the representation of these
datasets in 3D was emphasized. While such a representation
would provide additional precision in drawing the bounda-
ries of surfaces, it would not provide an excessive visual
improvement, because surfaces do not in fact have an over-
sized 3D component anyway. This would also increase the
number of vertices or triangles, which would have affected
the performance of the application. For roads, the conclusion
was similar, except that it was also necessary to determine
their boundary points to visualize in 3D. Road curves could
be smoothed in a 3D approach using a curve approximation
method, such as the Bezier curve (Joling 2017).

Other OSM data suitable for display as 3D objects in a
scene, such as buildings and objects that are point, line, and
polygon structures, were represented. The first thing that
comes to one’s mind when representing a map in 3D is to
represent buildings located in an area. The authors’ idea was
to represent the walls using a mesh in Unity. The authors
would apply the appropriate texture to the walls and add
doors and, if necessary, windows. Thereafter, a roof was
created and add details such as the names of facilities, house
numbers, and logos of facilities, added.

To implement the idea described, the height of each
building was first determined. If this information was explic-
itly available in the OSM dataset, it was used; if not, the
authors only knew the number of floors and had to approxi-
mate the height. This was done according to the following
formula: height = number of Floors ∗ 3 + 1.5[m] . The only
information available about the building is the position of
the polygon vertices that make up the floor plan of the build-
ing. To create walls, the positions of the vertices of each wall
were calculated. To do this, the authors iterated through all

points of the floor plan, taking two adjacent points at a time
and duplicating them along the y-axis with an additional
offset for the calculated height of the building. The windows
were added in a uniform arrangement with rotation in the
direction of the wall-normal vector. The procedure for visu-
alizing entrance doors on buildings was similar; however,
it was first necessary to determine which wall should be
located. This was determined based on the size of the wall
and its proximity to the street. When a door was created,
representations of other information about the building were
similarly created, if known. This information refers to the
house number of the building, name of the building, and
logo of certain institutions.

The roof-creation algorithm was divided into two cases.
In the case where the number of points of the floor plan
of the building was equal to four, a roof was created using
the information about its shape from the OSM data source.
Figure 5 below shows the roof shapes presented as part of
the application.

These roof shapes were created by defining all necessary
roof points and instantiating quadrangular and triangular
meshes based on them. A roof with a plane having more
than four points was represented as either flat or pyramidal.
A pyramidal roof was selected if the polygon describing the
floor plan were convex and if the data source did not explic-
itly state that the roof was flat. A special method was used
for the triangulation of flat roofs because it was difficult to
manually create a vertex array for an arbitrarily large num-
ber of points. Two cases were distinguished: first, when the
polygon undergoing triangulation was convex, and, second,
when it was concave. When testing polygon convexity, con-
vex polygons were sometimes declared and those that were
not, strictly speaking, mathematically. Most often, these are
polygons that contain points forming a straight line; that is,
the angle between them is 180°. However, during data pro-
cessing, there may be slight deviations from this angle, so a
small error was allowed. When the polygon representing the
roof was convex, a triangulation method called fan triangula-
tion was used. When the polygon representing the roof was
concave, triangulation was performed using a downloaded
script (http://​wiki.​unity​3d.​com/​index.​php?​title=​Trian​gulat​
orold​id=​20279).

The data extracted from the OSM dataset, represented
by a node element, are displayed on our map. These were
mostly street amenities such as trash cans, ATMs, and fire

Fig. 5   Types of roof shapes
represented in the application
from OSM data sources (source:
https://​wiki.​opens​treet​map.​org/​
wiki/​Key:​roof:​shape)

http://wiki.unity3d.com/index.php?title=Triangulatoroldid=20279
http://wiki.unity3d.com/index.php?title=Triangulatoroldid=20279
https://wiki.openstreetmap.org/wiki/Key:roof:shape
https://wiki.openstreetmap.org/wiki/Key:roof:shape

KN - Journal of Cartography and Geographic Information	

1 3

hydrants. For this point type of data, only the location and
type was available, that is, what it represented. Thus, a cor-
responding object was created in the virtual scene at the des-
ignated position. For some objects, such as one-way street
signs, speed limit signs, and street name signs, the exact
position was not known, but they were associated with the
road. Therefore, the node in the middle of the set of nodes
of the associated path was considered the reference location.
From this node, the authors searched for the nearest bound-
ary point in the nearby area, where there was no other point
object, and created a corresponding object at its position.

The second set of data came from path elements and rep-
resented line objects such as fences, railings, and walkways.
The process of creating these objects began by calculating
the distance between each position of the node on the path.
Based on this, and the length of a segment of the object,
the number of waypoints that can be found between two
nodes was determined. Using this information and calling
the Linear interpolation method, a list of waypoints was
obtained. Thereafter, a segment of the object oriented was
placed along the track at the position of the centroid of each
of the two adjacent waypoints.

In addition to the line objects obtained from way struc-
tures, polygonal objects were also recognized. However,
these were not surfaces that had been visualized in 2D;
rather, they were objects whose positions were described by
a polygon. The first dataset described sports fields, bowling
alleys, canopies, gas stations, greenhouses, and car washes.
Objects in the centroid position of the polygon were created,
and the direction of rotation was approximated as the long-
est side of the polygon. If necessary, the object was scaled
according to the size of the bounding box of the polygon.
Considering data describing bicycle parking, flower fields,
or seedling fields, the bounding box for a set of points that
describe the polygon were determined. Individual objects

were then created at a certain distance, and whether the
desired position was within the polygon was checked.

The data visualization from the GIS Zrinjevac data
sources was similar to the visualizations described ear-
lier. Structures that have stored tree information contain
information about tree height, tree species, and tree loca-
tion. The models of approximately 20 different tree species
were included in the application; if a model to represent a
particular tree species was not available, the authors ran-
domly selected a model from the set of those that were
available. The process of creating a tree and urban equip-
ment was identical to that of visualizing the OSM point
data. Visualization of shrub data was identical to visuali-
zation of a field of flowers or seedlings.

Figure 6 shows several screenshots from the applica-
tion, which in turn shows some of the created objects
described in this section. Figure 7 also shows a compari-
son between the view of the part of the city of Zagreb
created using the described method and the actual aerial
photographs of the selected area.

5 � Results

To analyze the performance and operation of the created
application in the context of this study, several different
tests were performed targeting different aspects of the
application performance. Because the application’s opera-
tion can be divided into two phases, the analysis of the
application was also divided into two phases. The first
phase included all parts of the application responsible for
data retrieval, data processing, terrain, and object creation,
and all the work the application had to do before display-
ing a 3D map. The second phase included map display
and user interaction. All measurements were performed

Fig. 6   Screenshot from the cre-
ated application showing a 3D
representation of a part of the
city of Zagreb with a focus on
buildings, roads, trees and urban
equipment

	 KN - Journal of Cartography and Geographic Information

1 3

on an Nvidia GTX 1070 GPU, Intel i7-4770 k quad-core
processor with 16 GB RAM.

5.1 � Application Execution Time

The authors first examined the time it took to execute all
scripts, from the start of the application to the map view
and found that they depended on the selected coordinates
for which the map was rendered. The selected coordinates
primarily determined the size of the terrain itself; however,
this did not affect the execution time, which was primarily
affected by the amount of data available for the selected
area. This set of data included data from the OSM source,
GIS Zrinjevac source, and Google Maps Elevation API.
The authors concluded that, the larger the volume of data
to download and process, the more time it took to do so.
How this changes as a function of the amount of data was
also investigated. To perform this test, the coordinates

(45.81,15.98) were taken as the central point. An increasing
range of coordinates were taken relative to the central point,
and the time taken from when the request was sent to when
the map was rendered on the screen, was recorded. For each
measurement, the number of nodes saved was also recorded,
including all nodes retrieved from the OSM and GIS Zrinje-
vac data sources. The number of points on the terrain height
map was kept constant at 33 × 33, the implications of which
are discussed later. Figure 8 shows a graph depicting the
dependence of the total execution time in seconds on the
total number of stored nodes. It also shows the execution
times for a total of six measurements, from which it can be
seen that the execution time, as a function of the number of
nodes, is a polynomial of degree two.

How execution time is related to heightmap resolution
was also considered in this study. To this end, measure-
ments for resolutions of 33 × 33, 65 × 65, 129 × 129, and
257 × 257 were taken. Figure 8 shows a diagram of the

Fig. 7   Comparison of the same location based on (A) a screenshot from the created application, and (B) the actual image of a part of the city of
Zagreb (source: https://​depos​itpho​tos.​com)

Fig. 8   Dependence of the total execution time of the application on the total number of stored nodes and the number of heightmap points, pre-
sented in the form of a connected scatter plot based on the urban area of Zagreb

https://depositphotos.com

KN - Journal of Cartography and Geographic Information	

1 3

desired relationship, from which it can be seen that the exe-
cution time required to create and set up the terrain is lin-
early related to the total number of points on the height map.

The percentage of execution time for each step of the
application was tested after this. The application’s work was
divided into six steps: (1) creating and setting up the terrain,
(2) retrieving and processing the OSM data, (3) texturing
the terrain, (4) visualizing 3D OSM data, and (5) visual-
izing GIS Zrinjevac data. Figure 9 shows a diagram repre-
senting the execution time percentage for each of the above
application steps, through six measurements with different
node numbers. From the plot shown, it can be concluded
that when there are a small number of nodes, the execution
time is impacted by the creation, setting, and texturing of
the terrain; however, because the time required for these
steps does not increase as much as the number of nodes
increases, their impact decreases as the number of nodes
increases. With a large number of nodes, the biggest impact
is the retrieval and processing of OSM data because it is
necessary to go through a large amount of OSM data and
store all the necessary data in structures. In addition, when
the number of nodes is large, the impact of visualizing 3D
OSM data increases significantly due to the fact that creat-
ing point data often requires calculating the orientation of
an object towards the road, which involves traversing all
road edge nodes.

5.2 � Application Refresh Rate

The next step investigated how individual data affected
the application update rate as the user moved around the
map. For this measurement, the number of frames per sec-
ond (FPS) metric was used. The testing method involves
positioning the camera so that it is looking at the created

map from above, and moving it in certain increments along
the x- and z-axes after each period. Each time the camera
was moved, the current number of frames per second was
recorded. A total of eight measurements were taken each
time, removing a group of data that has a representation in
the application. The measurements were taken to create a
map that was within the range of [45.8,45.81] latitude and
[15.97,15.98] longitude, and the obtained results were pre-
sented in boxplots, which can be seen in Fig. 10. From this,
it was concluded that line data, shrub data, trees, and urban
equipment had no significant impact on the application’s
operation in terms of frames per second, on average, up to
8%. However, the data with the greatest impact are the build-
ing and point data. When building data were removed, the
number of frames per second increased by an average of
44%, while without point data, an average increase of 39%
FPS was seen.

Figure 11 shows a diagram of the number of triangles and
vertices, as a function of the eight groups of data already
mentioned. In this diagram, it can be observed that tree
models have the largest and most significant number of ver-
tices and triangles in the created virtual scene. It is worth
mentioning that the direct view of the camera on the entire
displayed scene led to a drastic drop in the frame rate, to
only 4 FPS.

Although the measurement results shown in Figs. 10
and 11 appear to contradict each other, the effects of some
groups of data on the application performance were dif-
ferent due to the wide variation in how these measure-
ments were taken. Given that the results from Fig. 10
were obtained by measuring the number of frames per
second over smaller parts of the scene, and the results
from Fig. 11 were obtained using the global view of the
scene, the influence of object models (which are relatively

Fig. 9   Proportion of the execution steps of the application in the total execution time in relation to the number of nodes, presented in the form of
a stacked column chart based on the urban area of Zagreb

	 KN - Journal of Cartography and Geographic Information

1 3

rare in the first measurement) was reduced. Consequently,
models of trees, which were placed less frequently in the
scene, affected the number of frames per second less than

models of densely placed buildings. This measurement
was set up in this way due to the assumption that a user
would focus primarily on only a portion of the map during

Fig. 10   Dependence of frames per second on a portion of the data used in the application, presented in box plot format, based on the area within
the range of [45.8,45.81] latitude and [15.97,15.98] longitude

Fig. 11   Dependence of the number of triangles and vertices in the application on a portion of the data used, presented the form of a column
chart based on the area within the range of [45.8,45.81] latitude and [15.97,15.98] longitude

KN - Journal of Cartography and Geographic Information	

1 3

dynamic review; local models located in the observed area
therefore had the greatest impact on their experience.

6 � Conclusion

This study presented a new method for visualizing geospa-
tial areas, and used four publicly available data sources to
retrieve virtual imagery of real geographies. The retrieved
data were processed and displayed as either textures or
3D objects. To implement this proposed new method (and
thereby test its relevance), an application was created
using the Unity engine to create 3D representations of the
area, based on the selected coordinates. The obtained view
was in contrast to classic maps, which are also suitable for
displaying structures with large height differences (such
as mountain ranges), and the data used from the Google
Maps Elevation API source came to the fore during the
experiment.

The software solution created was used most often to dis-
play parts of the city where OSM data dominates; this way,
it was possible to distinguish various smaller 3D objects that
could not previously be represented using 2D representa-
tion techniques. The purpose of the representation obtained
can be the static representation of the area as a model or
the interactive 3D map for a virtual walk through the rep-
resented area. The proposed approach seeks to balance the
level of detail between the photorealism and abstraction
techniques explored elsewhere in this paper. If the approach
relied excessively on photorealism, as is most often the case
with photogrammetry and laser scanning techniques, the
resulting visualization will possess many geometric inac-
curacies; however, while the visual representation would be
geometrically accurate, it would not contain much informa-
tion and detail. It should also be noted that, using the OSM
dataset, the visualization is up-to-date with changes in the
real world; that is, at each launch of the implementation,
new data would be downloaded that reflects the cartographic
changes established since the last version.

Examining the execution of this proposed method, it was
established that the execution time dependence is, in the
worst case, a quadratic polynomial to the amount of retrieved
data, and this dependence could be further reduced if the
relations of the objects to the roads were not computed. The
results also showed that, when viewing a small part of the
created area, there were no concerns about the application
update rate as there were no problems with the number of
frames per second, whereas the update rate dropped sig-
nificantly when viewing the largest part or the whole area.
However, because this view is only interesting from a static

point of view, this was not considered a major problem. The
authors’ analysis showed that the buildings and individual
models used for polygon and point data had the greatest
impact. Ultimately, the application speed depended on the
amount and type of data available for the desired area, which
cannot be determined in advance.

Looking to possible future research, further exploring the
OpenStreetMap source should be considered, as it contains a
large amount of information, not all of which was examined
in this study. In particular, an investigation of the relation
elements not used in this study would add to the existing
research, as it would be likely to contain additional informa-
tion about the relationships between the path elements and
nodes used. This would allow for a more realistic integra-
tion of objects into the virtual scene. Additional dimensional
information about individual trees could be used in combina-
tion with procedural generation to produce a more convinc-
ing view. Roads and surfaces could also be represented as
3D objects, which would provide a more accurate represen-
tation, although it would require more computing power.
To reduce the application’s complexity and improve its user
experience, it would be beneficial to create a visualization
that follows the user’s movements, which would require the
representation to be rendered piece-by-piece, rather than all
at once, at the beginning. This approach is likely to result in
the user being able to explore the entire world with a single
application launch, rather than specifying a particular area.
Further, it should be noted that this approach requires match-
ing the speed of the user’s movement with the retrieval and
processing of background data. Based on the created map, a
component to perform spatial analysis based can be added,
as can a traffic simulation or navigation system between geo-
graphical points.

Additionally, combining the proposed approach described
in this study with other techniques would lead to a hybrid
model, which would also provide another area for further
research. For example, one possible approach could be to
use the OSM dataset to create the geometry of the build-
ings themselves, and use laser scanning techniques to obtain
information about the appearance of these buildings; pho-
togrammetric techniques could then be used to represent
the terrain and the actual surface texture at high resolution.

Funding  The authors did not receive support from any organization
for the submitted work.

Declarations 

Conflict of Interest  The authors have no competing interests to declare
that are relevant to the content of this article.

	 KN - Journal of Cartography and Geographic Information

1 3

References

Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A (2015) Applica-
tions of 3d city models: state of the art review. ISPRS Int J Geo
Inf 4(4):2842–2889

Bostrom G, Fiocco M, Gonçalves JGM, Sequeira V (2006) Urban 3d
modelling using terrestrial laser scanners. Int Arch Photogram
Remote Sens 36:279–284

Buyukdemircioglu M, Kocaman S, Isikdag U (2018) Semiautomatic
3d city model generation from large-format aerial images. ISPRS
Int J Geo Inf 7(9):339

Dallmeyer J, Lattner A, Timm I (2013) GIS-based traffic simulation
using OSM. Data Mining Geoinform Methods Appl. https://​doi.​
org/​10.​1007/​978-1-​4614-​7669-6_4

Fan H, Zipf A, Qing Fu, Neis P (2014) Quality assessment for
building footprints data on openstreetmap. Int J Geogr Inf Sci
28(4):700–719

Flamanc D, Maillet G, Jibrini H (2003) 3d city models: an operational
approach using aerial images and cadastral maps. Int Arch Pho-
togram Remote Sensing Spatial Info Sci 34:53–58

Girindran R, Boyd DS, Rosser J, Vijayan D, Long G, Robinson D
(2020) On the reliable generation of 3d city models from open
data. Urban Science 4(4):47

Girres J-F, Touya G (2010) Quality assessment of the French open-
streetmap dataset. Trans GIS 14(4):435–459

Goetz M (2013) Towards generating highly detailed 3d citygml models
from openstreetmap. Int J Geogr Inf Sci 27(5):845–865

Hadimlioglu IA, King SA (2019) City maker: reconstruction of cit-
ies from openstreetmap data for environmental visualization and
simulations. ISPRS Int J Geo-Info 8(7):298

Isikdag U, Zlatanova S (2009) Interactive modelling of buildings in
Google Earth: a 3D tool for Urban Planning, pp 52–70. https://​
doi.​org/​10.​1007/​978-3-​642-​04791-​64.

Joling A (2017) Open data sources for 3d data visualisation-generat-
ing 3d worlds based on openstreetmaps data. In VISIGRAPP (3:
IVAPP), pp 251–258

Jovanović D, Milovanov S, Ruskovski I, Govedarica M, Sladić D,
Radulović A, Pajić V (2020) Building virtual 3d city model for
smart cities applications: a case study on campus area of the uni-
versity of novi sad. ISPRS Int J GeoInform 9(8):476

Kocaman LS, Zhang AG, Poli D (2006) 3d city modeling from high-
resolution satellite images. Int Arch Photogram Remote Sens Spat
Info Sci. https://​doi.​org/​10.​3929/​ethz-b-​00015​8058

Madubedube A, Coetzee S, Rautenbach V (2021) A contributor-
focused intrinsic quality assessment of openstreetmap in mozam-
bique using unsupervised machine learning. ISPRS Int J Geo-Info
10(3):156

Nuhn E, Reinhardt W, Haske B (2012) Generation of landmarks from
3D city models and OSM data. Proceedings of the AGILE’2012
International Conference on Geographic Information Science,
Avignon, France

Ohori K, Biljecki F, Kumar K, Ledoux H, Stoter J (2018) Mod-
eling Cities and Landscapes in 3D with CityGML, pp

199–215. ISBN 978-3-319-92861-6. https://​doi.​org/​10.​1007/​
978-3-​319-​92862-​311

Ohori KA, Ledoux H, Biljecki F, Stoter J (2015) Modeling a 3d city
model and its levels of detail as a true 4d model. ISPRS Int J Geo-
Info 4(3):1055–1075

Over M et al (2010) Generating web-based 3D city models from Open-
StreetMap: the current situation in Germany. Comput Environ
Urban Syst 34(6):496–507

Ross L (2011) Virtual 3d city models in urban land management-tech-
nologies and applications. Dissertation, Technische Universität
Berlin, Fakultät VI - Planen Bauen Umwelt

Sharkawi K, Ujang U, Rahman A (2008) Developing 3D navigation
system using 3D game engine. In: Advances Towards 3D GIS, pp
131–140. Penerbit UTM

Shiode N (2000) 3d urban models: recent developments in the digital
modelling of urban environments in three-dimensions. GeoJournal
52(3):263–269

Singh SP, Jain K, Mandla VR (2013a) Virtual 3d city modeling: tech-
niques and applications. ISPRS-Int Arch Photogram Remote Sens
Spat Info Sci XL:73–91

Singh SP, Jain K, Mandla VR (2013b) Virtual 3d campus modeling by
using close range photogrammetry. Am J Civil Eng Architecture
1(6):200–205

Singh SP, Jain K, Mandla VR (2014) A new approach towards image
based virtual 3d city modeling by using close range photo-
grammetry. ISPRS Ann Photogram Remote Sens Spat Info Sci
2(5):329–337

Singla JG, Padia K (2021) A novel approach for generation and visu-
alization of virtual 3D city model using open source libraries. J
Indian Soc Remote Sens 49:1239–1244. https://​doi.​org/​10.​1007/​
s12524-​020-​01191-8

Stančić B, Cetl V, Mađer M (2014) Ispitivanje potencijala dobro-
voljnih geoinfomacija na primjeru openstreetmapa u hrvatskoj.
Kartografija i Geoinformacije 13(22):48–69

Verma V, Kumar R, Hsu S (2006) 3d building detection and modeling
from aerial lidar data. In: 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’06),
vol 2, pp 2213–2220. IEEE

Wang Z, Zipf A (2017) Using openstreetmap data to generate build-
ing models with their inner structures for 3d maps. ISPRS Ann
Photogram Remote Sens Spat Info Sci 4:411–416

Yang B (2016) Gis based 3-d landscape visualization for promoting
citizen’s awareness of coastal hazard scenarios in flood prone tour-
ism towns. Appl Geogr 76:85–97

Yang B, Lee J (2019) Improving accuracy of automated 3-d building
models for smart cities. Int J Dig Earth 12(2):209–227

Zhou Q-Y, Neumann U (2008) Fast and extensible building modelling
from airborne lidar data. In Proceedings of the 16th ACM SIG-
SPATIAL international conference on Advances in geographic
information systems, pp 1–8

https://doi.org/10.1007/978-1-4614-7669-6_4
https://doi.org/10.1007/978-1-4614-7669-6_4
https://doi.org/10.1007/978-3-642-04791-64
https://doi.org/10.1007/978-3-642-04791-64
https://doi.org/10.3929/ethz-b-000158058
https://doi.org/10.1007/978-3-319-92862-311
https://doi.org/10.1007/978-3-319-92862-311
https://doi.org/10.1007/s12524-020-01191-8
https://doi.org/10.1007/s12524-020-01191-8

	Automated 3D Urban Landscapes Visualization Using Open Data Sources on the Example of the City of Zagreb
	Abstract
	Zusammenfassung
	1 Introduction
	2 Related Work
	3 Data Used and Study Area
	4 Methodology
	4.1 Data Processing and Terrain Generation
	4.2 Data Visualization

	5 Results
	5.1 Application Execution Time
	5.2 Application Refresh Rate

	6 Conclusion
	References

