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Abstract
Geographical location visualization is important to create virtual environments when performing simulations. This study 
uses publicly available data sources to create three-dimensional (3D) views of geographical locations, focusing on the city 
of Zagreb as a case study, and presents an automated solution that integrates data from four different sources to achieve this. 
Publicly available data sources (OpenStreetMap, Google Maps Elevation API, MapBox Static Images API) were used, and 
GIS Zrinjevac which is unique to Zagreb. Based on these sources, individual 3D objects were generated and displayed virtu-
ally in the form of an interactive 3D map. The proposed solution attempts to balance the differing levels of detail achieved 
using other techniques. The solution was implemented in the form of an application created using the Unity game engine. 
The results were analyzed to evaluate the solution’s validity and the created application’s performance. The analysis showed 
that the total execution time dependence is quadratically polynomial to the amount of retrieved data, and linear to the num-
ber of height map points. Examining the application’s update rate showed that the buildings and individual models used for 
polygon and point data had the greatest impact. Finally, possible improvements, alternative approaches, and advantages and 
disadvantages of the proposed solution are compared with other techniques used in this research area.
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Automatisierte 3D-Visualisierung urbaner Landschaften unter Verwendung offener 
Datenquellen am Beispiel der Stadt Zagreb

Zusammenfassung
Die Visualisierung geographischer Standorte ist wichtig, um virtuelle Umgebungen zur Durchführung von Simulationen zu 
erstellen. Diese Studie verwendet öffentlich verfügbare Datenquellen, um dreidimensionale (3D) Ansichten geographischer 
Standorte abzuleiten, wobei der Schwerpunkt auf der Stadt Zagreb als Fallstudie liegt. Die Studie liefert eine automatisierte 
Lösung, um Daten aus vier verschiedenen Quellen zu integrieren. Verwendet wurden öffentlich verfügbare Datenquellen 
(OpenStreetMap, Google Maps Elevation API, MapBox Static Images API) sowie GIS Zrinjevac, welches nur in Zagreb 
verfügbar ist. Auf der Grundlage dieser Quellen wurden individuelle 3D-Objekte generiert und in einer interaktiven 3D-Karte 
virtuell dargestellt. Die vorgeschlagene Lösung versucht, die unterschiedlichen Level of Details auszugleichen, die bei 
Verwendung anderer Techniken erreicht werden. Die Lösung wurde in Form einer Anwendung implementiert, die mit der 
Game-Engine Unity erstellt wurde. Um die Lösung im Ganzen fachgerecht zu bewerten sowie die Leistungsfähigkeit der 
entwickelten Anwendung zu überprüfen, wurden die Ergebnisse analysiert. Dabei zeigte sich, dass die Ausführungszeit im 
Ganzen quadratisch-polynomial abhängig ist von der Menge der abgerufenen Daten. Zudem ist sie linear abhängig zur Anzahl 
der Höhenkartenpunkte. Bei der Untersuchung der Aktualisierungsrate der Anwendung zeigte sich, dass die Gebäude sowie 
die einzelnen Modelle, die für Polygon- und Punktdaten verwendet wurden, den größten Einfluss hatten. Am Ende werden 
mögliche Verbesserungen, alternative Ansätze sowie die Vor- und Nachteile der vorgeschlagenen Lösung mit anderen in 
diesem Forschungssegment eingesetzten Techniken verglichen.

1  Introduction

It is possible to find cartographic data faster and easier today 
than ever before. Such data are easy to process and display 
in a two-dimensional (2D) space, but displaying this in a 
three-dimensional (3D) space is a more challenging task as 
many attributes are insufficient or difficult to visualize. A 
2D display is sometimes convenient, but does not often pro-
vide a complete picture of the observed area. Figure 1 shows 
a comparison of map representations for the same area in 
2D and 3D. Although current technologies offer numerous 
data sources, many are not publicly available for download. 
As a result, the focus of this study is on publicly available 

data sources, of which OpenStreetMap (OSM) is the most 
important. Other sources used include Google Maps Eleva-
tion API, MapBox Static Images API, and GIS Zrinjevac.

Modeling of 3D areas, especially cities, is an important 
topic in geomatics and can be achieved using various tech-
niques. Three-dimensional modeling techniques are auto-
matically classified as automatic, semi-automatic and man-
ual, and also by data input methods based on laser scanning 
and photogrammetry (Singh et al. 2013a). A model making 
use of aerial photogrammetry is currently one of the most 
popular in the visualization of cities, and it is possible to 
create a semi-automatic model of city visualization using 
such datasets (Buyukdemircioglu et al. 2018). In addition 

Fig. 1   Comparison of (A) 2D (source: https://​www.​google.​com/​maps) and (B) 3D map representations of the urban area of Paris (source: https://​
devel​opers.​google.​cn/​maps/​docum​entat​ion/​gaming/​overv​iew_​musk?​hl=​zh-​cn)

https://www.google.com/maps
https://developers.google.cn/maps/documentation/gaming/overview_musk?hl=zh-cn
https://developers.google.cn/maps/documentation/gaming/overview_musk?hl=zh-cn
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to aerial photogrammetry, satellite photogrammetry is also 
commonly used (Kocaman et al. 2006) to provide examples 
of modeling 3D cities from high-quality satellite imagery 
using various software tools. Although it is possible to create 
high-quality city models using satellite and aerial imagery, 
these images are often not accessible to everyone. Therefore, 
a method of close-range photogrammetry has been devel-
oped, in which a 3D model of the city can be created from 
a series of images taken with an ordinary handheld digital 
camera (Singh et al. 2013b) or using a recorded video and 
extracting the necessary images from it (Singh et al. 2014).

In addition to photogrammetry, laser scanning may be 
used, either from air or from the ground. Terrestrial laser 
scanners can be used for automated 3D modeling of urban 
environments (Bostrom et al. 2006), and light detection 
and ranging (LiDAR) technology has been shown to pro-
duce photorealistic virtual representations of large cities at 
relatively low costs (Jovanović et al. 2020). However, the 
main drawbacks of LiDAR are the large amount of data 
obtained by this technique, which needs to be analyzed 
and processed (Zhou and Neumann 2008), and the limited 
resolution of the samples near the edges of the surfaces 
(Verma et al. 2006). LiDAR also performs poorly under 
certain weather conditions, such as high cloud cover and 
heavy rain. Additionally, good results are not obtained in 
areas with highly reflective surfaces (Verma et al. 2006). 
In contrast, LiDAR’s advantages are the fast acquisition of 
data with high precision, direct measurement of the depth 
component of objects (Verma et al. 2006) and independ-
ence from daylight. Because the image obtained by LiDAR 
contains many artifacts, this technique is primarily used in 
cases where there is emphasis on photorealistic representa-
tion or aesthetic impression; polygonal model representation 
is used where the visualization is created only as a basis for 
further simulations. In such situations, geometric inaccu-
racies are undesirable. Because the techniques mentioned 
above involve certain visualization problems, to improve and 
increase the accuracy of the representation itself, combina-
tions of the described techniques are most often used today, 
which we also call hybrid methods. Thus, it is possible to 
combine aerial images with cadastral maps to increase the 
accuracy of the created model (Flamanc et al. 2003) or to 
combine aerial images, LiDAR, and total stations to obtain 
a 3D model of the city (Yang and Lee 2019).

CityGML is one of the most popular data formats used for 
city visualization, and is designed to source and exchange 
data to visualize urban areas (Ohori et al. 2015, 2018). In 
this format, cities are characterized by their level of detail 
(LOD); although a higher level of detail is better for creat-
ing a view, it should be noted that most applications and 
models only use the LOD1 level of detail. Based on this, the 
implementation in this study will reach the LOD2 level of 
detail. Because we know that the CityGML format is very 

complex and CityGML data are difficult to find, this study 
uses the OSM data format. This format can be converted 
to the CityGML detail formats LOD1 and LOD2 relatively 
easily (Goetz 2013).

When it comes to a data source itself, such as OSM, it is 
important to note that the data obtained may be incomplete 
and/or incorrect because of the way it is collected. This is 
because many contributors do not adhere to recommenda-
tions on attributes for objects given during participation, 
either due to insufficient knowledge or a lack of interest 
(Stančić et al. 2014). Because the OSM database is incom-
plete, many studies have assessed the quality of OSM data 
in specific areas (Fan et al. 2014; Girres and Touya 2010). 
The accuracy and completeness of OSM data, when only 
buildings are considered, for the Republic of Croatia varies 
from place to place. In the city of Zagreb, the accuracy of the 
city center data is close to 100%, whereas on the city edges, 
it is closer to 50% (Stančić et al. 2014). By combining the 
OSM dataset with other sources, it is possible to eliminate 
problems such as insufficient or incorrect elevation data of 
objects; for example, elevation data can be found via satellite 
imagery (Girindran et al. 2020).

The applications of visualization can be divided into non-
visualization cases (where the creation of 3D models and 
the performance of 3D spatial operations are not required) 
and visualization cases (where the 3D model itself is a very 
important component of the use case and its use would not 
make sense without it) (Biljecki et al. 2015). The modeling 
of cities is most encountered in the context of 3D geospatial 
location visualization because it is the most challenging, 
and, accordingly, attracts the most attention from research-
ers and the most concrete applications for such research can 
be found. The use of 3D city models created by different 
visualization techniques can be divided into four categories: 
planning and design, infrastructure and facilities manage-
ment, commerce and marketing, and promotion and learning 
of information about cities (Shiode 2000).

Concrete applications of landscape visualization in three 
dimensions can be found in the development of 3D naviga-
tion systems (Sharkawi et al. 2008), urban land manage-
ment in the form of reducing land consumption (Ross 2011), 
and urban development planning as a tool that allows city 
planners to easily insert proposed buildings into existing 3D 
environments (Isikdag and Zlatanova 2009) in the simulation 
of flooding in coastal areas to promote awareness among 
residents of the dangers of such situations (Yang 2016). 
In Biljecki et al. (2015), 29 different cases were identified 
where 3D city models would be useful.

This study seeks to use data available from selected 
sources to create the most accurate representation of any 
geographic area in three dimensions. First, the data were 
retrieved and processed. Each extracted piece of informa-
tion was accompanied by a specific graphical representation 



	 KN - Journal of Cartography and Geographic Information

1 3

with a description of the advantages and disadvantages of 
such a representation. The territory representation was 
implemented using the Unity engine, which in turn used a 
scripting system based on the C# programming language and 
publicly available object models. The developed application 
contained a simple user interface through which it is possible 
to enter geolocation parameters in the form of latitude and 
longitude values. After displaying the resulting visualiza-
tion, the user could move around the created 3D map.

This study is divided into several sections, of which 
Sect. 2 provides an overview of existing work and pro-
gress in the geomatics field. Section 3 describes the data 
sources used in more detail and considers their availability 
and impact on the visualization of the selected area. It also 
provides insights into the geographic area that the research-
ers primarily considered when undertaking this study. In 
turn, Sect. 4 specifically describes how the mapped data 
was represented and the visualization issues the researchers 
encountered. Section 5 uses statistical methods to show the 
impact of different data groups and datasets on the perfor-
mance of the proposed application. A final overview of the 
topic and the implementation achieved in this study is given 
in Sect. 6, along with suggestions for possible improvements 
and future work.

2 � Related Work

The introduction of this study refers to work in the area of 
3D surface modeling without specifically addressing the 
researchers’ topic or implementation proposed in this paper. 
This section looks at several research papers that use OSM 
as their main data source.

Not all works examined are oriented towards the genera-
tion of an entire city visualization, and some focus only on 
a part of a city. Wang and Zipf (2017) focused on the visu-
alization of buildings over OSM, more specifically using the 
extended IndoorOSM, achieving the LOD4 level of detail as 
per the CityGML standard. According to Nuhn et al. (2012), 
the focus of this work is even more specific, as it only inves-
tigates the generation of landmarks; essentially, it examines 
which features classify a building as a landmark and shows 
how these attributes can be extracted from the OSM data.

Existing research has also focused on visualization crea-
tion for the purpose of simulations. For example, Dallmeyer 
et al. (2013) demonstrated that traffic simulations could be 
performed using OSM maps. In addition, Hadimlioglu and 
King (2019) describe a simple visualization procedure to 
simulate water extent in an area in the case of flooding. For 
the purpose of this study, the authors limited themselves 
to the LOD0 and LOD1 levels of detail within the Cit-
yGML specification. Further, in addition to the OSM data 
itself, elevation information obtained via the Shuttle Radar 

Topography Mission (SRTM) global map was used, and 
visualization implemented with OpenGL.

Many studies have also used elevation information from 
other sources in combination with OSM data. For example, 
Over et al. (2010) used publicly available elevation infor-
mation provided by the SRTM. The suitability and quality 
of the OSM data were discussed in Over et al.’s research, 
in addition to generation. Girindran et al. (2020) also used 
open satellite elevation data to describe a methodology for 
generating low-cost 3D city models. Another work that uses 
exclusively developed routines and open-source libraries to 
visualize virtual 3D city models in real time is Singla and 
Padia (2021), which uses imagery from high-resolution sat-
ellites and high-resolution digital elevation models, in addi-
tion to OSM.

However, Joling’s (2017) work most closely matches this 
study, in terms of topic and implementation. Joling describes 
the process of visualizing geographic locations with OSM 
using the Unity drive. In addition to OSM, a global SRTMv3 
elevation map is used by Joling, while the terrain is textured 
using the tool Maperitive.

Over the years, many 3D terrain visualization tools have 
been developed that can be run in a web browser, such as 
OSMBuildings (https://​osmbu​ildin​gs.​org), which displays 
only buildings, and F4Maps (https://​demo.​f4map.​com), 
which produces a visualization down to the level of LOD2 
detail, which is also the target of this work. However, the 
latter tool does not have information on height; therefore, 
the visualization itself is simplified. The tool OSM2World 
(http://​osm2w​orld.​org) has a similar level of detail, but still 
has the same drawbacks as the previously mentioned tool. 
Desktop solutions are also available, such as JOSM (https://​
josm.​opens​treet​map.​de), but these only provide a 2D repre-
sentation of a map. In addition to the aforementioned solu-
tions, there are software development packages (SDKs) for 
the Unity engine that use datasets for visualization. The most 
well known among them is that from Google, the Maps SDK 
for Unity.

Compared with other research in this area, this study will 
focus on the trade-off between photorealism and abstraction, 
that is, the lack of a large amount of detail. Figure 2 (below) 
shows a comparison between a city visualization obtained 
by aerial photogrammetry (Buyukdemircioglu et al. 2018) 
and a visualization produced by the web tool OSMBuildings. 
The image shows that the use of photogrammetry and laser 
scanning techniques introduces certain instabilities in terms 
of object geometry, but also produces visual improvements 
in contrast to a polygonal representation of the data. One 
would never be able to store and display as much informa-
tion in a polygonal representation, as is available through 
other techniques. That said, a geometrically accurate model 
is sometimes more important than the details. This is evident 
in cases where the created representation was later used in 

https://osmbuildings.org
https://demo.f4map.com
http://osm2world.org
https://josm.openstreetmap.de
https://josm.openstreetmap.de


KN - Journal of Cartography and Geographic Information	

1 3

this study as a model for event simulation, where accurate 
simulation calculations are required. A compromise between 
the described approaches would be useful in the representa-
tion of urban areas, to later perform geographic and urban 
planning analysis or navigation displays in situations where 
accurate route calculations are needed, as well as a visually 
effective representation for a better user experience.

3 � Data Used and Study Area

The basis of any 3D map is the surface on which details are 
to be represented. The terrain is usually not simply a flat sur-
face but depends on the elevation map of a particular area. In 
this study, information about the elevation map was obtained 
from the Google Maps elevation API. This simple appli-
cation interface was used to retrieve information about the 
elevation of a location on the Earth’s surface, as elevation 
data are available for almost all locations, including those in 
seas and oceans where the elevation is negative. All eleva-
tion values obtained through this service were expressed in 
meters (m) with respect to the local mean sea level. Working 
with the described application interface was manifested by 
sending an HTTP request in the URL that contains infor-
mation about the location under examination for an eleva-
tion value. In addition to elevation, it is desirable to texture 
the terrain with a satellite image, and details that were not 
available from other data sources were covered by satellite 
texture. The MapBox Static Images API, supported by the 
MapBox GL server, was used to retrieve satellite images.

Major usage restrictions and unavailability of map data 
around the world have led to the creation of OpenStreetMap. 
The OSM Project was created in 2004 with the primary goal 
of creating a public and free map of the world that also had 
the ability to edit it (Girres and Touya 2010). Today, OSM 
has more than seven million users who work together to 
improve the overall system (Madubedube et al. 2021). These 

users help to improve the OSM using aerial imagery, GPS 
devices, and simple maps to maintain and validate an accu-
rate and up-to-date cartographic database. The collected 
information is publicly and freely accessible, which was 
the main reason that OSM was chosen as the primary data 
source for this study. OSM uses a topological data structure 
composed of four basic elements:

•	 Node: a point with geographic coordinates intended to 
indicate a feature without size.

•	 Way: an ordered list of nodes that may represent a linear 
or polygonal object.

•	 Relation: an ordered list of nodes, paths, or relations 
whose purpose is to represent the relationship between 
the existing nodes and paths.

•	 Tag: a tag is a key-value pair used to store metadata 
about objects on a map.

Map data can be downloaded for an area in the form of 
an.osm file and an XML file with a limited set of tags.

Finally, it should be mentioned that an alternative to this 
method of retrieving OSM data is to use already static files. 
However, a major drawback of this approach is that it is 
necessary to know in advance the country in which the area 
that must be visualized is located. However, if this informa-
tion is available, one would not need to retrieve or process 
the OSM data every time. Subsequently, this file could be 
easily processed using some of the available command tools, 
such as Osmosis, to extract a specific subset of information.

Although OSM provides a wide range of information, 
from which data can be extracted for 3D representation, it 
is quite general; as a result, the amount of information it 
provides for some areas is small. A data source called GIS 
Zrinjevac (https://​gis.​zrinj​evac.​hr) was therefore used to 
visualize the Zagreb area. This additional data source repre-
sents the green space cadastre of the city of Zagreb and con-
tains information on three types of data: shrubs, trees, and 

Fig. 2   Comparison of the visualization of the city obtained by (A) aerial photogrammetry (Buyukdemircioglu et al., 2018) and (B) OSMBuild-
ings web tool (Source: https://​osmbu​ildin​gs.​org)

https://gis.zrinjevac.hr
https://osmbuildings.org


	 KN - Journal of Cartography and Geographic Information

1 3

public urban equipment (e.g., benches, tables, trash cans, 
fountains, playground equipment). GIS Zrinjevac allows its 
users to view the data on an interactive 2D map; however, 
to use this data, one must find a way to retrieve it. Look-
ing more closely at Internet traffic, it was noted that each 
new map view sends a specific HTTP request to the server 
with the type of data to be retrieved. The server’s response 
to this request includes the data structure with the required 
information.

This study focuses on the capital and largest city of the 
Republic of Croatia, Zagreb. The city of Zagreb is located 
near a geographical position of 45° 50' N and 15° 58' E in 
northwestern Croatia. Zagreb is situated on a predominantly 
uneven terrain of approximately 641 km2 with the lowest 
point being 122 m and the highest point being 1,035 m above 
sea level. The average altitude is 158 m, and the estimated 
population is approximately 800,000, with most buildings 
located in the lowlands. As we have already described, the 
additional data source GIS Zrinjevac is available exclusively 
for this city; therefore, we will base the display and perfor-
mance evaluation on the geographical area it covers. The 
visualization is, of course, automated, so it is possible to 
display any chosen geographical location, but we omit the 
details included in the mentioned data source.

4 � Methodology

Following the described data sources used to implement the 
visualization, this section describes how the retrieved data 
were processed and adapted for further use. A brief descrip-
tion of the procedures used to display 2D and 3D elements 
on the map is also described; the general workflow of the 
data visualization process described in this section is shown 
in Fig. 3 below.

4.1 � Data Processing and Terrain Generation

A terrain was created as a first step, using the Google Maps 
Elevation API data source as a basis for displaying addi-
tional details within the visualization. The terrain’s dimen-
sion was determined using a method to calculate the distance 

between two points in meters, based on their coordinates in 
the EPSG:4326 system. Because one corner of the terrain 
aligned with the origin of the scene coordinate system and 
the terrain extended along the x-and z-coordinate axes in 
the positive direction, the increase in the x-coordinate rep-
resented a greater length and an increase in the z-coordinate 
represented a greater width.

Thereafter, the terrain created was modeled by its eleva-
tion data, the information of which was obtained from the 
Google Elevation API source described earlier. It should be 
emphasized that it is not possible to specify the elevation 
for each point of the terrain in Unity, but it is necessary 
to specify the height map with a predefined resolution in 
advance; the elevation can then be specified for each point 
of this map. For the resolution of the height map, one of 
several predefined options could be chosen (between 33 × 33 
and 4097 × 4097), where the product was the number of uni-
formly distributed points in the height map. Thus, it was 
necessary to send a request to the server for each point in the 
network. Because the application interface had a limit on the 
number of locations for which it sent a response, it was not 
possible to request all points simultaneously. The authors 
sent a request to the server for each row of the height map; 
that is, for each latitude increment. Note that the Google 
Elevation API was not completely free, but its usage was 
determined by the number of HTTP requests sent. Figure 4 
shows a comparison of the created terrain with two different 
height map resolutions. On the left of Fig. 4, terrain created 
with a resolution of 65 × 65 is seen, which had a cost of 65 
HTTP requests, while, on the right, terrain with a resolution 
of 257 × 257 and a cost of 257 requests is seen.

Another way to obtain the elevation of an area is to use 
satellite images (Hadimlioglu and King 2019; Joling 2017). 
The difference in elevation in the downloaded image is 
determined by the contrast of the image; thus, the lighter 
parts indicate a higher elevation, and the darker parts indi-
cate a lower elevation. The disadvantage of this method is 
that the data obtained by these processes are relative, since 
an absolute value of the height is not available, only its rela-
tive ratio. However, its advantage is its independence from 
Internet access and server services, as well as being able 
to obtain a continuous bandwidth of altitude information 

Fig. 3   Flow chart of the general workflow in the data visualization process described in this paper
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without sending a large number of HTTP requests, which 
significantly increases implementation time. As a hybrid 
method, the use of satellite imagery should be empha-
sized, with the retrieval of two pieces of information via 
the Google elevation API to determine the absolute values 
of all other points in the terrain based on these values and 
relationships from the imagery.

OSM data are processed using the primitives specified 
in the OSM dataset description or tag-and-store objects 
that are displayed in a virtual environment within the C# 
programming language. In this process, it is necessary to 
map the retrieved geographic coordinates from the OSM 
dataset, onto their positions in the scene. This is done by 
calculating the difference between the retrieved geographic 
coordinates and the minimum coordinates, and the amount 
of deviation in the scene space. Data about trees, shrubs, and 
urban equipment were extracted from the source GIS Zrin-
jevac. Because this data source was based on the reference 
coordinate system EPSG:3857, and all other data sources 
used were based on the system EPSG:4326, it was neces-
sary to convert the edge coordinates to the above system. 
Locations obtained by calling a method that converts a given 
location expressed in latitude and longitude to a location in 
meters were sent to the GIS Zrinjevac server. The location 
of the data obtained from this source was first stored in the 
EPSG:3857 system and later converted to the EPSG:4326 
system, to be consistent with other data. To obtain additional 
information about trees and urban equipment for each data-
set, an additional HTTP request was sent.

4.2 � Data Visualization

The terrain created in this study is a satellite image. To 
achieve this, it was necessary to texture the terrain using 
terrain layers. The texture grid was set at a resolution of 
4096 × 4096 pixels; this is the maximum resolution allowed 

in Unity (the higher this value, the more precise the texturing 
and the more accurate the applied image). The image was 
simply connected to an appropriate terrain layer and applied 
to all the points in the texture grid.

The data represented as 2D surfaces on the created terrain 
are roads, and the data from the OSM dataset represented 
a surface, such as building land, grassy areas, paved areas, 
and earth surfaces.

To visualize surfaces, a suitable algorithm was developed, 
the idea of which was to apply the texture intended to repre-
sent this surface to the entire area covered by it. The first step 
in the execution of the algorithm was to find the positions on 
the texture grid of all stored reference vertices located inside 
the path structure. The bounding box was determined from 
these positions. By traversing all the points of this box, the 
authors checked whether the point was within the polygon 
and within the boundaries of the terrain. Based on this, it 
was determined that the surface layer should be applied to 
this point in the texture grid. A slightly more complicated 
texturing procedure related to the visualization of parking 
lots, where, in addition to the texture of the surface, the 
white lines that made up the parking lots also had to be 
placed.

For the algorithm used to generate the roads, the width of 
the road was first determined based on the number of lanes. 
In addition, data on the width of a lane were needed, but 
this data are not available in OSM; this value was therefore 
estimated depending on the importance of the road. The ref-
erence nodes that made up the path structure were unevenly 
distributed along the path; therefore, the values between 
them had to be interpolated. Because integer values had 
to be interpolated between the tiles of the texture grid, the 
Bresenham algorithm was used. The direction in which part 
of the road between the two plotted nodes extended was also 
determined. This determined direction was used to calculate 
the number of adjacent tiles of the grid that the researchers 

Fig. 4   Comparison of terrain 
created with A 65 × 65 and B 
257 × 257 heightmap resolution
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wanted to texture. For this reason, the determined road width 
was divided by the length or width of a tile, depending on 
the axis for which the direction was determined. Finally, 
alternating road layers of asphalt and white paint were drawn 
to represent the lines on the road.

One limitation of this approach is the resolution of the 
texture grid. Because the maximum resolution is limited, it 
was assumed that for a larger selected area, the area of each 
tile that made up the grid would increase. Thus, for an area 
of 1 km × 1 km, one tile covers an area of 0.06 m2, while for 
an area of 20 km × 20 km, the same tile covers approximately 
24 m2. Therefore, when representing data by texturing over 
large areas, necessary accuracy may have been lost. As a 
possible solution to this problem, the representation of these 
datasets in 3D was emphasized. While such a representation 
would provide additional precision in drawing the bounda-
ries of surfaces, it would not provide an excessive visual 
improvement, because surfaces do not in fact have an over-
sized 3D component anyway. This would also increase the 
number of vertices or triangles, which would have affected 
the performance of the application. For roads, the conclusion 
was similar, except that it was also necessary to determine 
their boundary points to visualize in 3D. Road curves could 
be smoothed in a 3D approach using a curve approximation 
method, such as the Bezier curve (Joling 2017).

Other OSM data suitable for display as 3D objects in a 
scene, such as buildings and objects that are point, line, and 
polygon structures, were represented. The first thing that 
comes to one’s mind when representing a map in 3D is to 
represent buildings located in an area. The authors’ idea was 
to represent the walls using a mesh in Unity. The authors 
would apply the appropriate texture to the walls and add 
doors and, if necessary, windows. Thereafter, a roof was 
created and add details such as the names of facilities, house 
numbers, and logos of facilities, added.

To implement the idea described, the height of each 
building was first determined. If this information was explic-
itly available in the OSM dataset, it was used; if not, the 
authors only knew the number of floors and had to approxi-
mate the height. This was done according to the following 
formula: height = number of Floors ∗ 3 + 1.5[m] . The only 
information available about the building is the position of 
the polygon vertices that make up the floor plan of the build-
ing. To create walls, the positions of the vertices of each wall 
were calculated. To do this, the authors iterated through all 

points of the floor plan, taking two adjacent points at a time 
and duplicating them along the y-axis with an additional 
offset for the calculated height of the building. The windows 
were added in a uniform arrangement with rotation in the 
direction of the wall-normal vector. The procedure for visu-
alizing entrance doors on buildings was similar; however, 
it was first necessary to determine which wall should be 
located. This was determined based on the size of the wall 
and its proximity to the street. When a door was created, 
representations of other information about the building were 
similarly created, if known. This information refers to the 
house number of the building, name of the building, and 
logo of certain institutions.

The roof-creation algorithm was divided into two cases. 
In the case where the number of points of the floor plan 
of the building was equal to four, a roof was created using 
the information about its shape from the OSM data source. 
Figure 5 below shows the roof shapes presented as part of 
the application.

These roof shapes were created by defining all necessary 
roof points and instantiating quadrangular and triangular 
meshes based on them. A roof with a plane having more 
than four points was represented as either flat or pyramidal. 
A pyramidal roof was selected if the polygon describing the 
floor plan were convex and if the data source did not explic-
itly state that the roof was flat. A special method was used 
for the triangulation of flat roofs because it was difficult to 
manually create a vertex array for an arbitrarily large num-
ber of points. Two cases were distinguished: first, when the 
polygon undergoing triangulation was convex, and, second, 
when it was concave. When testing polygon convexity, con-
vex polygons were sometimes declared and those that were 
not, strictly speaking, mathematically. Most often, these are 
polygons that contain points forming a straight line; that is, 
the angle between them is 180°. However, during data pro-
cessing, there may be slight deviations from this angle, so a 
small error was allowed. When the polygon representing the 
roof was convex, a triangulation method called fan triangula-
tion was used. When the polygon representing the roof was 
concave, triangulation was performed using a downloaded 
script (http://​wiki.​unity​3d.​com/​index.​php?​title=​Trian​gulat​
orold​id=​20279).

The data extracted from the OSM dataset, represented 
by a node element, are displayed on our map. These were 
mostly street amenities such as trash cans, ATMs, and fire 

Fig. 5   Types of roof shapes 
represented in the application 
from OSM data sources (source: 
https://​wiki.​opens​treet​map.​org/​
wiki/​Key:​roof:​shape)

http://wiki.unity3d.com/index.php?title=Triangulatoroldid=20279
http://wiki.unity3d.com/index.php?title=Triangulatoroldid=20279
https://wiki.openstreetmap.org/wiki/Key:roof:shape
https://wiki.openstreetmap.org/wiki/Key:roof:shape


KN - Journal of Cartography and Geographic Information	

1 3

hydrants. For this point type of data, only the location and 
type was available, that is, what it represented. Thus, a cor-
responding object was created in the virtual scene at the des-
ignated position. For some objects, such as one-way street 
signs, speed limit signs, and street name signs, the exact 
position was not known, but they were associated with the 
road. Therefore, the node in the middle of the set of nodes 
of the associated path was considered the reference location. 
From this node, the authors searched for the nearest bound-
ary point in the nearby area, where there was no other point 
object, and created a corresponding object at its position.

The second set of data came from path elements and rep-
resented line objects such as fences, railings, and walkways. 
The process of creating these objects began by calculating 
the distance between each position of the node on the path. 
Based on this, and the length of a segment of the object, 
the number of waypoints that can be found between two 
nodes was determined. Using this information and calling 
the Linear interpolation method, a list of waypoints was 
obtained. Thereafter, a segment of the object oriented was 
placed along the track at the position of the centroid of each 
of the two adjacent waypoints.

In addition to the line objects obtained from way struc-
tures, polygonal objects were also recognized. However, 
these were not surfaces that had been visualized in 2D; 
rather, they were objects whose positions were described by 
a polygon. The first dataset described sports fields, bowling 
alleys, canopies, gas stations, greenhouses, and car washes. 
Objects in the centroid position of the polygon were created, 
and the direction of rotation was approximated as the long-
est side of the polygon. If necessary, the object was scaled 
according to the size of the bounding box of the polygon. 
Considering data describing bicycle parking, flower fields, 
or seedling fields, the bounding box for a set of points that 
describe the polygon were determined. Individual objects 

were then created at a certain distance, and whether the 
desired position was within the polygon was checked.

The data visualization from the GIS Zrinjevac data 
sources was similar to the visualizations described ear-
lier. Structures that have stored tree information contain 
information about tree height, tree species, and tree loca-
tion. The models of approximately 20 different tree species 
were included in the application; if a model to represent a 
particular tree species was not available, the authors ran-
domly selected a model from the set of those that were 
available. The process of creating a tree and urban equip-
ment was identical to that of visualizing the OSM point 
data. Visualization of shrub data was identical to visuali-
zation of a field of flowers or seedlings.

Figure 6 shows several screenshots from the applica-
tion, which in turn shows some of the created objects 
described in this section. Figure 7 also shows a compari-
son between the view of the part of the city of Zagreb 
created using the described method and the actual aerial 
photographs of the selected area.

5 � Results

To analyze the performance and operation of the created 
application in the context of this study, several different 
tests were performed targeting different aspects of the 
application performance. Because the application’s opera-
tion can be divided into two phases, the analysis of the 
application was also divided into two phases. The first 
phase included all parts of the application responsible for 
data retrieval, data processing, terrain, and object creation, 
and all the work the application had to do before display-
ing a 3D map. The second phase included map display 
and user interaction. All measurements were performed 

Fig. 6   Screenshot from the cre-
ated application showing a 3D 
representation of a part of the 
city of Zagreb with a focus on 
buildings, roads, trees and urban 
equipment
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on an Nvidia GTX 1070 GPU, Intel i7-4770 k quad-core 
processor with 16 GB RAM.

5.1 � Application Execution Time

The authors first examined the time it took to execute all 
scripts, from the start of the application to the map view 
and found that they depended on the selected coordinates 
for which the map was rendered. The selected coordinates 
primarily determined the size of the terrain itself; however, 
this did not affect the execution time, which was primarily 
affected by the amount of data available for the selected 
area. This set of data included data from the OSM source, 
GIS Zrinjevac source, and Google Maps Elevation API. 
The authors concluded that, the larger the volume of data 
to download and process, the more time it took to do so. 
How this changes as a function of the amount of data was 
also investigated. To perform this test, the coordinates 

(45.81,15.98) were taken as the central point. An increasing 
range of coordinates were taken relative to the central point, 
and the time taken from when the request was sent to when 
the map was rendered on the screen, was recorded. For each 
measurement, the number of nodes saved was also recorded, 
including all nodes retrieved from the OSM and GIS Zrinje-
vac data sources. The number of points on the terrain height 
map was kept constant at 33 × 33, the implications of which 
are discussed later. Figure 8 shows a graph depicting the 
dependence of the total execution time in seconds on the 
total number of stored nodes. It also shows the execution 
times for a total of six measurements, from which it can be 
seen that the execution time, as a function of the number of 
nodes, is a polynomial of degree two.

How execution time is related to heightmap resolution 
was also considered in this study. To this end, measure-
ments for resolutions of 33 × 33, 65 × 65, 129 × 129, and 
257 × 257 were taken. Figure 8 shows a diagram of the 

Fig. 7    Comparison of the same location based on (A) a screenshot from the created application, and (B) the actual image of a part of the city of 
Zagreb (source: https://​depos​itpho​tos.​com)

Fig. 8   Dependence of the total execution time of the application on the total number of stored nodes and the number of heightmap points, pre-
sented in the form of a connected scatter plot based on the urban area of Zagreb

https://depositphotos.com
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desired relationship, from which it can be seen that the exe-
cution time required to create and set up the terrain is lin-
early related to the total number of points on the height map.

The percentage of execution time for each step of the 
application was tested after this. The application’s work was 
divided into six steps: (1) creating and setting up the terrain, 
(2) retrieving and processing the OSM data, (3) texturing 
the terrain, (4) visualizing 3D OSM data, and (5) visual-
izing GIS Zrinjevac data. Figure 9 shows a diagram repre-
senting the execution time percentage for each of the above 
application steps, through six measurements with different 
node numbers. From the plot shown, it can be concluded 
that when there are a small number of nodes, the execution 
time is impacted by the creation, setting, and texturing of 
the terrain; however, because the time required for these 
steps does not increase as much as the number of nodes 
increases, their impact decreases as the number of nodes 
increases. With a large number of nodes, the biggest impact 
is the retrieval and processing of OSM data because it is 
necessary to go through a large amount of OSM data and 
store all the necessary data in structures. In addition, when 
the number of nodes is large, the impact of visualizing 3D 
OSM data increases significantly due to the fact that creat-
ing point data often requires calculating the orientation of 
an object towards the road, which involves traversing all 
road edge nodes.

5.2 � Application Refresh Rate

The next step investigated how individual data affected 
the application update rate as the user moved around the 
map. For this measurement, the number of frames per sec-
ond (FPS) metric was used. The testing method involves 
positioning the camera so that it is looking at the created 

map from above, and moving it in certain increments along 
the x- and z-axes after each period. Each time the camera 
was moved, the current number of frames per second was 
recorded. A total of eight measurements were taken each 
time, removing a group of data that has a representation in 
the application. The measurements were taken to create a 
map that was within the range of [45.8,45.81] latitude and 
[15.97,15.98] longitude, and the obtained results were pre-
sented in boxplots, which can be seen in Fig. 10. From this, 
it was concluded that line data, shrub data, trees, and urban 
equipment had no significant impact on the application’s 
operation in terms of frames per second, on average, up to 
8%. However, the data with the greatest impact are the build-
ing and point data. When building data were removed, the 
number of frames per second increased by an average of 
44%, while without point data, an average increase of 39% 
FPS was seen.

Figure 11 shows a diagram of the number of triangles and 
vertices, as a function of the eight groups of data already 
mentioned. In this diagram, it can be observed that tree 
models have the largest and most significant number of ver-
tices and triangles in the created virtual scene. It is worth 
mentioning that the direct view of the camera on the entire 
displayed scene led to a drastic drop in the frame rate, to 
only 4 FPS.

Although the measurement results shown in Figs. 10 
and 11 appear to contradict each other, the effects of some 
groups of data on the application performance were dif-
ferent due to the wide variation in how these measure-
ments were taken. Given that the results from Fig.  10 
were obtained by measuring the number of frames per 
second over smaller parts of the scene, and the results 
from Fig. 11 were obtained using the global view of the 
scene, the influence of object models (which are relatively 

Fig. 9   Proportion of the execution steps of the application in the total execution time in relation to the number of nodes, presented in the form of 
a stacked column chart based on the urban area of Zagreb
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rare in the first measurement) was reduced. Consequently, 
models of trees, which were placed less frequently in the 
scene, affected the number of frames per second less than 

models of densely placed buildings. This measurement 
was set up in this way due to the assumption that a user 
would focus primarily on only a portion of the map during 

Fig. 10   Dependence of frames per second on a portion of the data used in the application, presented in box plot format, based on the area within 
the range of [45.8,45.81] latitude and [15.97,15.98] longitude

Fig. 11   Dependence of the number of triangles and vertices in the application on a portion of the data used, presented the form of a column 
chart based on the area within the range of [45.8,45.81] latitude and [15.97,15.98] longitude
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dynamic review; local models located in the observed area 
therefore had the greatest impact on their experience.

6 � Conclusion

This study presented a new method for visualizing geospa-
tial areas, and used four publicly available data sources to 
retrieve virtual imagery of real geographies. The retrieved 
data were processed and displayed as either textures or 
3D objects. To implement this proposed new method (and 
thereby test its relevance), an application was created 
using the Unity engine to create 3D representations of the 
area, based on the selected coordinates. The obtained view 
was in contrast to classic maps, which are also suitable for 
displaying structures with large height differences (such 
as mountain ranges), and the data used from the Google 
Maps Elevation API source came to the fore during the 
experiment.

The software solution created was used most often to dis-
play parts of the city where OSM data dominates; this way, 
it was possible to distinguish various smaller 3D objects that 
could not previously be represented using 2D representa-
tion techniques. The purpose of the representation obtained 
can be the static representation of the area as a model or 
the interactive 3D map for a virtual walk through the rep-
resented area. The proposed approach seeks to balance the 
level of detail between the photorealism and abstraction 
techniques explored elsewhere in this paper. If the approach 
relied excessively on photorealism, as is most often the case 
with photogrammetry and laser scanning techniques, the 
resulting visualization will possess many geometric inac-
curacies; however, while the visual representation would be 
geometrically accurate, it would not contain much informa-
tion and detail. It should also be noted that, using the OSM 
dataset, the visualization is up-to-date with changes in the 
real world; that is, at each launch of the implementation, 
new data would be downloaded that reflects the cartographic 
changes established since the last version.

Examining the execution of this proposed method, it was 
established that the execution time dependence is, in the 
worst case, a quadratic polynomial to the amount of retrieved 
data, and this dependence could be further reduced if the 
relations of the objects to the roads were not computed. The 
results also showed that, when viewing a small part of the 
created area, there were no concerns about the application 
update rate as there were no problems with the number of 
frames per second, whereas the update rate dropped sig-
nificantly when viewing the largest part or the whole area. 
However, because this view is only interesting from a static 

point of view, this was not considered a major problem. The 
authors’ analysis showed that the buildings and individual 
models used for polygon and point data had the greatest 
impact. Ultimately, the application speed depended on the 
amount and type of data available for the desired area, which 
cannot be determined in advance.

Looking to possible future research, further exploring the 
OpenStreetMap source should be considered, as it contains a 
large amount of information, not all of which was examined 
in this study. In particular, an investigation of the relation 
elements not used in this study would add to the existing 
research, as it would be likely to contain additional informa-
tion about the relationships between the path elements and 
nodes used. This would allow for a more realistic integra-
tion of objects into the virtual scene. Additional dimensional 
information about individual trees could be used in combina-
tion with procedural generation to produce a more convinc-
ing view. Roads and surfaces could also be represented as 
3D objects, which would provide a more accurate represen-
tation, although it would require more computing power. 
To reduce the application’s complexity and improve its user 
experience, it would be beneficial to create a visualization 
that follows the user’s movements, which would require the 
representation to be rendered piece-by-piece, rather than all 
at once, at the beginning. This approach is likely to result in 
the user being able to explore the entire world with a single 
application launch, rather than specifying a particular area. 
Further, it should be noted that this approach requires match-
ing the speed of the user’s movement with the retrieval and 
processing of background data. Based on the created map, a 
component to perform spatial analysis based can be added, 
as can a traffic simulation or navigation system between geo-
graphical points.

Additionally, combining the proposed approach described 
in this study with other techniques would lead to a hybrid 
model, which would also provide another area for further 
research. For example, one possible approach could be to 
use the OSM dataset to create the geometry of the build-
ings themselves, and use laser scanning techniques to obtain 
information about the appearance of these buildings; pho-
togrammetric techniques could then be used to represent 
the terrain and the actual surface texture at high resolution.
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