
Using Priority Rules for Resource-Constrained Project
Scheduling Problem in Static Environment

Mateja Dumića,∗, Domagoj Jakobovićb

aDepartment of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia
bFaculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

Abstract

The resource-constrained project scheduling problem (RCPSP) is one of the
scheduling problems that belong to the class of NP -hard problems. Therefore,
heuristic approaches are usually used to solve it. One of the most commonly
used heuristic approaches are priority rules (PRs). PRs are easy to use, fast and
able to respond to system changes, which makes them applicable in a dynamic
environment. The disadvantage of PRs is that when applied in a static environ-
ment, they do not achieve results of the same quality as heuristic approaches
designed for a static environment. Moreover, a new PR must be evolved sepa-
rately for each optimization criterion, which is a challenging process. Therefore,
recently significant effort has been put into the automatic development of PRs.
Although PRs are mainly used in a dynamic environment, they are also used in a
static environment in situations where speed and simplicity are more important
than the quality of the obtained solution. Since PRs evolved for the dynamic
environment do not use all the information available in a static environment,
this paper analyzes two adaptations for evolving PRs for the RCPSP - iterative
priority rules and rollout approach. This paper shows that these approaches
achieve better results than the PRs evolved and used without these adapta-
tions. The results of the approaches presented in the paper were also compared
with the results obtained with the genetic algorithm as a representative of the
heuristic approaches used mainly in the static environment.

Keywords: genetic programming, resource constrained project scheduling
problem, priority rules, iterative priority rules, rollout, static environment

1. Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the
complex constrained scheduling problems that occur in daily life and attract

∗Corresponding author
Email addresses: mdjumic@mathos.hr (Mateja Dumić), domagoj.jakobovic@fer.hr

(Domagoj Jakobović )

Preprint submitted to Computers & Industrial Engineering March 3, 2022



numerous researchers. In RCPSP, there are two types of constraints - prece-
dences and resources. The precedence constraints specify which activities take5

place before and after each activity, while the resource constraints contain in-
formation about the resources needed to execute the activities and the amount
of resources available in each time period.

Usually, solving methods in combinatorial optimization can be divided into
two groups: exact algorithms and heuristics. The solution space for scheduling10

problems increases dramatically as the size of the problem increases, making
exact methods impractical. Therefore, heuristic methods are mostly used to
solve the RCPSP.

Heuristic methods used to solve RCPSP can be divided into two groups -
constructive and improvement heuristics. Constructive heuristics start with an15

empty schedule and build a complete schedule through iterations by adding
one or more activities in each iteration. The representatives of constructive
heuristics are priority rules (PRs). Unlike constructive heuristics, improve-
ment heuristics start with an initial solution that is then improved through
iterations. Improvement heuristics include various evolutionary and population-20

based meta-heuristics such as genetic algorithm (GA) (Gargiulo & Quagliarella,
2012; Hindi et al., 2002; Alcaraz et al., 2003; Kadam & Kadam, 2014), ant
colony optimization (ACO) (Merkle et al., 2002), and simulated annealing (SA)
(Valls & Ballest́ın, 2004).

Heuristic methods may also differ in whether they are applicable in a static25

or dynamic environment, or both. A static environment is one in which all
information about the activities in the project (duration, resource requirements,
release time, due date) and the resources needed to schedule those activities are
known in advance and cannot be changed during the creation of the schedule
or the execution of the activities. In contrast, in a dynamic environment, not30

all information is available or known from the beginning and can change during
planning or execution.

PRs are a heuristic approach that can respond to changes in dynamic en-
vironments and generally generate schedules very quickly. Therefore, they are
very commonly used in a dynamic environment. The disadvantage of these35

methods is that they usually lead to solutions that are of worse quality than the
solutions found by improvement heuristics. Moreover, a separate PR must be
applied for each optimization criterion. Therefore, recent research has placed
great emphasis on the automatic development of PRs. Evolutionary compu-
tation methods are most commonly used in the development of new PRs, es-40

pecially genetic programming (GP). PRs evolved by GP have performed well
in numerous scheduling environments (Jakobović & Budin, 2006; Jakobović &
Marasović, 2012; Nguyen et al., 2013; Hunt et al., 2014; Durasević et al., 2016).
In most of the studies, PRs were designed for a dynamic environment. Although
the results obtained with PRs in a static environment are worse than the re-45

sults obtained with an improvement heuristic, PRs can also be used in static
environments.

Typically, PRs are used in a static environment in situations where the time
required to find a solution is more important than the quality of the solution.

2



Also, the ability to react to changes in the system is sometimes helpful and nec-50

essary in a static environment where all information is available and known, but
changes can still occur, for example, when a machine fails. In such situations,
the improvement heuristics must start from the beginning, while the PR con-
tinues from the moment of change. For this reason, the question arises whether
there are ways to use more information available in a static environment to55

improve the quality of solutions while maintaining the speed of solution finding
when using PRs. Such adaptations of PRs are found only in a small number of
works (Hildebrandt et al., 2010; Nguyen et al., 2013; Durasević et al., 2016). Re-
cently, an adaptation for the unrelated machine environment has been analyzed
in Durasević & Jakobović (2020). In this paper, we analyze some adaptations60

of the evolving process of PRs for the resource-constrained project scheduling
problems - RCPSP. So far, the adaptation of PRs for RCPSP in static envi-
ronments has been analyzed only in a single paper (Chand et al., 2019), which
leaves many questions unanswered. Accordingly, this paper analyzes previously
unused approaches in RCPSP and static environments as well as existing ap-65

proaches that are less time consuming than those used in Chand et al. (2019).
The main contributions of this paper are:

� two approaches for adaptation of automatically evolved priority rules for
RCPSP for a static environment

� comparison of the proposed approaches with dynamic priority rules evolved70

with genetic programming and solutions obtained by the genetic algorithm
as a representative of improvement metaheuristics

� time analysis of the compared approaches and methods.

The rest of the paper is organized as follows. Problem definition and re-
lated work, divided into three parts, are given in Section 2. In the first part75

of the section, the definition of RCPSP is given; in the second part, genetic
programming is briefly explained, while in the third part, the evolution process
of PRs for RCPSP is described. In Section 3, two adaptation approaches for
PRs used in a static environment are described in detail. Section 4 describes
the experimental setup and Section 5 presents and discusses the results of the80

experiments. Finally, Section 6 concludes the research conducted in this work
and provides new directions for future investigations.

2. Problem Definition and Related Work

2.1. RCPSP

The resource-constrained scheduling problem (RCPSP) is an NP -hard com-85

binatorial optimization problem (Blazewicz et al., 1983) given as follows: there
are n activities that need to be scheduled and m resources available and needed
for the execution of the given activities. The resources needed for execution
can be renewable, nonrenewable, and doubly constrained (S lowinski, 1981). Re-
sources are renewable if they are available in the same quantity in each time90

3



period, nonrenewable if their quantity is reduced by use, and doubly constrained
if their quantity is limited in each time period and for the entire project. The
time and quantity of each resource required to execute an activity are known,
as well as the set of activities that must be completed before it starts with
execution. Solving RCPSP means finding a schedule that satisfies all given95

constraints while optimizing one or more criteria. In the basic formulation,
minimizing the completion time of the last activity (makepan) is usually used
as the optimization criterion, i.e., the total duration of the project. The ba-
sic formulation implies no preemption, which means that the activity cannot
be interrupted once it has started its execution. In addition, only renewable100

resources are considered.
Formally, the basic formulation of the RCPSP can be given with the tu-

ple (Artigues et al., 2008):

RCPSP = (A,E, p,R,B,D, c). (1)

In the above definition, A = {0, . . . , n + 1} represents the set of activities.
The activities 0 and n+1 are usually called dummy activities and represent the
beginning and the end of the project, respectively. The duration of the activities105

in the set A is given by the vector p ∈ Nn+2
0 . In particular, dummy activities

have a duration of 0.
The set E consists of pairs of activities (i, j) representing precedence con-

straints. In each pair, the second activity is the successor of the first, which
means that the second activity cannot be executed until the first is finished. By110

convention, the n+ 1 activity follows all other activities in the project.
The resources that are renewable in this formulation are given by the set

R = {1, . . . ,m} and their available quantities in each time period are given by
the vector B ∈ Nm. The activities’ demand for each available resource is given
by the matrix D ∈ N(n+1)×m. Dummy activities have no demand for resources.115

Consequently, the first and last rows of the matrix D consist of zeros.
The last member of the tuple is the objective function, denoted by c : χ ⊂

Rn+2 → R, where χ is the set of all feasible schedules. If the time span is used
as an objective function, it can be omitted in the tuple. The goal is to find the
feasible schedule S ∈ χ with the best value of the objective function. The vector120

S consists of the start times of each activity in the project. More precisely, the
i-th component Si of S represents the start time of the activity i. The schedule
is feasible if all constraints (precedence and resources) are satisfied, which can
be formulated as follows:

Sj − Si ≥ pi ∀(i, j) ∈ E (2)

∑
i∈At

Dij ≤ Bj ∀t ≥ 0,∀j ∈ R (3)

where At = {i ∈ A | Si ≤ t ≤ Si + pi} is the set of activities that are active125

at the given time t.

4



The basic formulation of this problem can be extended by introducing addi-
tional constraints, such as the time at which certain activities become available
(not all activities may be available at the time the project starts), the possibility
of interrupting an activity, and similiar . For more details on this problem, see130

Artigues et al. (2008); Blazewicz et al. (1983); Hartmann & Briskorn (2010) and
Abdolshah (2014).

2.2. GP

Genetic programming (GP) is an evolutionary computing algorithm similar
to the genetic algorithm (GA). The main difference between GP and GA is the135

representation of the individual. Unlike GA, the individuals in GP do not have
to have a precise form known in advance (Poli et al.). The individuals can be
programs, expressions, or mathematical functions that represent a solution to a
particular problem (Poli et al.; Koza, 1992).

Based on foundation given by Koza (1990) GP is becoming a widely used140

technique in numerous optimization (Koza, 1992) and classification (Espejo
et al., 2010) problems. The results obtained by GP are mostly competitive with
human-made ones(Koza et al., 1996). The good performance and the ability to
build a complex structure from simple structures make this technique ideal for
the hyperheuristic approach (Burke et al., 2009, 2010, 2013). In the literature,145

GP has been used as a hyperheuristic in problems such as bin packing (Ku-
mar et al., 2008; Özcan & Parkes, 2011; Burke et al., 2012), project scheduling
(Frankola et al., 2008; Dumić et al., 2018; Chand et al., 2018), timetabling (Pil-
lay, 2012; Bader-El-Den et al., 2009), and the vehicle routing problem (Oltean
& Dumitrescu, 2004; Beham et al., 2009; Vonolfen et al., 2013).150

GP uses a population of individuals where each individual represents a so-
lution. The procedure of GP starts with initializing the population, which can
be done randomly or with some other approach. After initialization, new in-
dividuals for the next generation are generated from the existing individuals
and genetic operators. The goal is to improve the fitness of the individuals in155

the population in each generation. The GP procedure is described with the
algorithm 1

Algorithm 1 genetic programming

1: initialize population
2: do
3: select individuals based on fitness
4: generate new individuals from the selected ones using genetic operators
5: while stopping criteria are not met
6: return best individual as solution

In GP it is important to choose a good solution representation. The solu-
tion representation must be able to build complex structures, and at the same
time it must allow a genetic operator to easily make changes. Therefore, the160

tree representation is usually used as the solution representation. For the tree

5



representation, it is important to define the primitive set from which the tree
nodes are selected. The primitive set consists of two subsets: terminal set and
function set. The terminal set consists of variables and constants, and elements
from it can only be placed in the leaf nodes of the tree. The function set consists165

of expressions, operators and functions, and its elements are placed in non-leaf
nodes. To achieve good results with GP, it is important that these two sets
consist of different elements. It is also important that these sets are not too
large (because the number of elements increases the solution space). At the
same time, they must contain all the essential properties of the problem to form170

a structure good enough to represent the solution of the problem. For more
details about GP and genetic operators, see Poli et al. and Koza (1992).

2.3. Evolving PRs for the RCPSP

The RCPSP is an NP-hard problem, and heuristic methods are usually used
to solve it. Priority rules (PRs) are a representative of constructive heuristic175

methods that build schedules from scratch by iteration. This method is fast and
straightforward, which makes it applicable in dynamic environments. PRs are
created to solve multiple instances, which leads to the fact that heuristics that
solve one problem instance at a time usually achieve better results than PRs.
However, in real life, there are many situations where simplicity and speed are180

more important than quality, resulting in PRs being used in many situations.
PRs are primarily used in dynamic environments, but they can also be used in
a static environment.

PRs for scheduling problems, including RCPSP, are used in combination
with the Scheduling Generation Scheme - SGS. Based on the priority assigned185

to each activity, the SGS decides which activity to schedule next, ensuring
that all constraints are met. SGS builds the schedule through iterations. In
RCPSP, we distinguish two versions of SGS: parallel and serial. Parallel SGS
(PSGS) iterates by time intervals, while serial SGS (SSGS) iterates by activities.
Therefore, the number of iterations may differ between the different types of190

SGS. For SSGS, the number of iterations corresponds to the number of activities
that need to be scheduled, and for PSGS, it corresponds to the number of time
periods in which some of the activities have been scheduled. In practice, the
results obtained with PSGS are usually of better quality than those obtained
with SSGS. For more on SSGS and PSGS, see Kolisch (1996) and Kolisch &195

Hartmann (1999).
The PR used in SGS can be defined manually or created using an auto-

mated development method. Due to the need to develop a different PR for
each criterion and the complexity of creating new PRs, methods and proce-
dures for automated development have recently been studied extensively. The200

most commonly used method for developing PRs is GP.
The development of PRs using GP for the RCPSP is first mentioned in the

work of Frankola et al. (2008) and has been studied more extensively in recent
years (Dumić et al., 2018; Chand et al., 2018; Chand, 2018; Chand et al., 2019;
Dumić & Jakobović, 2021). Recently, PRs have been used for extended versions205

of RCPSP such as multi-skill RCPSP (Lin et al., 2020) and stochastic RCPSP

6



(Chen et al., 2020). The literature also contains research on how to select which
PR to use (Guo et al., 2020; Chakrabortty et al., 2020).

To evolve PRs using GP, it is necessary to define a primitive set - a set of
terminals and functions used in the evolving process. In Frankola et al. (2008),210

only a small set of terminals and functions was used for evolving PRs, while
these two sets were extended in researches conducted in Dumić et al. (2018)
and Chand et al. (2018). The elements of the terminal and functional sets were
not identical in these two papers, and in Chand et al. (2018) the values of the
attributes were normalized to a range from 0 to 1. The experiments conducted215

in Dumić (2020) have shown that there is no significant difference between the
results obtained with a terminal set from Dumić et al. (2018) and a terminal
set from Chand et al. (2018), while the results obtained with the function set
proposed in Chand et al. (2018) are better than the results obtained with the
function set from Dumić et al. (2018). Moreover, these experiments have shown220

that the results obtained with normalized and non-normalized attributes are not
significantly different. Since normalization in the experiments adds effort and
does not improve the results, it does not need to be used. In Chand et al. (2018),
different representations of individuals were analyzed and the experiments per-
formed recommend the use of an arithmetic representation. Moreover, in Dumić225

et al. (2018) different schemes for generating schedules were tested and PSGS
seems to be the best one for evolving PRs with GP for RCPSP. Various opti-
mization functions have been used in the literature for evolving priority rules.
Generally, optimization functions based on profit margin or deviation from the
lower bound have been used. However, it is important to note that research in230

the literature has shown that PRs evolved using GP can compete with existing
rules for other criteria such as total weighted completion time, equal resource
utilization, and net present value.

Although much research has been done recently on the automatic develop-
ment of PRs for the RCPSP (Dumić et al., 2018; Chand et al., 2018, 2019),235

most of the focus is still on rules that are applicable in a dynamic environment,
while there is only one work (Chand et al., 2019) for a static environment. In
Chand et al. (2019), the rollout justification procedure is used. This procedure
consists of two parts - rollout and justification. In the rollout part, when decid-
ing which activity to schedule next, all options are considered and the best one240

is selected. This process repeats until a complete schedule is created. After a
schedule is created, iterative forward-backward planning is performed, and this
part is called justification.

3. Adaptation approaches for evolving PRs for a static environment

This paper will analyze iterative priority rules (IPR) and the rollout ap-245

proach to further improve evolved priority rules that can be used in a static
environment. IPR builds a schedule multiple times, in such a way that each
iteration uses information from the previous iteration’s schedule to improve re-
sults. Unlike IPR, the rollout approach does not build the entire schedule from
scratch multiple times, but instead considers different options at the decision250

7



point. The rollout approach considers multiple activities in each decision point.
It determines the quality of the created schedule when each of them is selected,
and selects the one that has achieved the best complete schedule by scheduling
it next. This process continues until the last activity is scheduled.

3.1. IPR255

IPRs are an approach in which a schedule is built through iterations by using
information from the previous iteration to build a better schedule in the current
iteration. Building the schedule is repeated until its quality stops improving,
which determines the number of iterations. The adapted SGS used in this
approach is given by Algorithm 2. In IPR, the adapted SGS is used both in260

the development of new PRs and in their application to solve new instances of
the problem. It can be seen from the Algorithm 2 that the final schedule is not
the last created schedule, but the schedule created in the penultimate iteration,
since this is a schedule whose fitness is not worse than the fitness of the last
created schedule.265

Algorithm 2 SGS for scheduling with IPR

1: Input: initial value P0 for the parameter set P whose values are remem-
bered through iterations

2: P ← P0

3: fitness ←∞
4: schedule← ∅
5: best schedule← ∅
6: do
7: best schedule← schedule
8: schedule← schedule built by using SGS and PR
9: fitness*← fitness

10: fitness ← fitness of built schedule
11: calculate new values for the parameter set P based on the built schedule

and save it in variable P
12: while fitness* > fitness
13: return best schedule

Since the information from the previous iteration must be used when creat-
ing the schedule, it is necessary to ensure that it can be transferred from one
schedule to another. The easiest way to transfer information is to include it in
the PR. For this reason, it is necessary to introduce new terminals that will be
used in rule development. By putting information in terminals, the information270

from the previous iteration can be included in the rule in a way that can have
the greatest impact on quality. Terminals must be introduced depending on
the problem being solved and the optimization criterion being used. The values
of these terminals are calculated based on the schedule built in the previous
iteration, so they must be initialized somehow in the first iteration. When ini-275

tializing these values, it is important to choose values that (depending on the

8



optimization criterion) are higher or lower than the values that can be reached
in order to avoid termination of the evolution process in the first iteration.

3.2. Rollout approach

A rollout approach is a simple approach that can be applied to different280

heuristic methods to obtain better results (Bertsekas & Castanon, 1998; Bert-
sekas & Castanon, 1999; Bertsekas, 2013). This approach combines exhaustive
search and heuristic methods. The main idea is to apply exhaustive search only
in some parts of the decision space and at the same time achieve better results
than heuristic methods and reduce the required time for finding a solution. To285

achieve this, all possibilities at the time of the decision are considered. However,
unlike an exhaustive search, the process of determining which of these choices
is the best does not proceed with an exhaustive search; instead, the remaining
choices are made using a given heuristic. After the best option is selected based
on the results obtained by the heuristic, scheduling continues by moving to the290

next decision point and repeating the previous procedure.
A version of this approach was used for the RCPSP in Chand et al. (2019),

where significant improvements were achieved. However, in this work, the time
for evolving PRs and solving new problems has increased significantly, which
means the loss of one of the main advantages of PRs over other heuristic meth-295

ods. Therefore, in this work, the main goal will be to minimize the time needed
to evolve PRs and solve new instances. As a result, the quality of the results
is expected to deteriorate, but at the same time, the results obtained are ex-
pected to be significantly better than those obtained by using the standard
procedure for evolving PRs used in a dynamic environment. The adaptations300

of the evolution of PRs using the rollout approach in this paper are made based
on Durasević & Jakobović (2020). In Durasević & Jakobović (2020), the adap-
tation is made for an unrelated machine environment, and in this adaptation,
the speed of the PRs is preserved, and at the same time the results have been
improved.305

The pseudocode of the adapted PSGS used in this work is given by the
Algorithm 3. In this algorithm, a schedule is created starting from an empty
schedule. The procedure is repeated as long as there are unscheduled activities.
Algorithm 3 is an adaptation of PSGS, which means that the iterations are done
by time periods. In the algorithm, the first time period in which an activity310

can be scheduled must be found. If multiple activities can be scheduled, they
are prioritized based on the specified PR and then sorted. A predetermined
number of activities with the highest priority are then considered and the same
number of schedules are created. The schedules are created by selecting one
of the observed activities to be scheduled next. After scheduling this activity,315

the remaining activities are scheduled based on a priority rule and standard
PSGS. Then, the procedure is repeated for each observed activity. Among the
observed activities, the one whose scheduling resulted in the best schedule is
selected. Suppose that the fitness value of the schedule created by schedul-
ing the selected activity is greater than the fitness value of the previous best320

schedule. In this case, the selected activity is scheduled, otherwise the activity

9



with the highest priority is scheduled. During this whole procedure, the best
schedule is saved and returned as the final solution. The greater the number of
activities considered in the decision-making process, the greater is the possibil-
ity of achieving a better result. On the other hand, as the number of activities325

increases, so does the time needed to create a schedule.

Algorithm 3 roll-out approach

1: Input: n - number of activities considered in decision making
π - priority rule

2: time ← 0
3: previous fitness←∞
4: best fitness ←∞
5: best schedule ← ∅ STATE while there is unscheduled activities do
6: schedule ← best schedule
7: set time to the next time an activity is available
8: use π to calculate the priority of available activities Ai

9: sort the activities by given priority
10: textbffor activity Ai, i = 1, . . . , n do
11: add activity Ai in schedule
12: use PR π to create the remaining part of the schedule
13: fitness← fitness of built schedule
14: if fitness < best fitness then
15: best fitness←fitness
16: activity*← Ai

17: end
18: end
19: if best fitness < previous fitness then
20: previous fitness ← best fitness
21: add activity* to best schedule
22: textbfelse
23: add highest priority activity in best schedule
24: end STATE textbfend STATE back best schedule

In Chand et al. (2019), the adapted SGS was used both in the evolution of
PRs and in solving new instances. In contrast, in this work, the customized
SGS is only used to solve new instances, while the PRs are evolved using the
standard PSGS. Therefore, the time needed to evolve the PRs will be greatly330

reduced, which will unfortunately affect the quality of the solution. However, on
the other hand, the time required for execution remains reasonable. It should
also be noted that if the evolved PRs already exist, they do not need to be
evolved again to be used in combination with adapted SGS for new instances of
the problem. For completeness of results, a comparison of the approach used in335

this paper with the approach used in Chand et al. (2019) is provided.

10



4. Experimental setup

The C++ programming language in combination with the ECF (Jakobović
& et al., 2020) was used to implement the hyperheuristic approach of designing
PRs for the RCPSP.340

4.1. Data set

PRs will be evolved using instances from the Project scheduling problem
library (PSPLIB) (Wittemann, 2020). PSPLIB consists of 2040 problem in-
stances divided into 4 groups depending on the number of activities in the
project. We distinguish groups of problem instances with 30, 60, 90 and 120345

activities. Within each of these groups, problem instances were generated us-
ing ProGen and various parameters that affect the hardness of the problem.
More about the set of instances and their generation can be found in Kolisch &
Sprecher (1997) and Kolisch et al. (2001).

In this work, the learning and validation sets are used for the development of350

PRs. These sets consist of 10% of different problem instances from the PSPLIB
set, i.e. 204 problem instances. The additional validation set (Validation Set 2)
was used to set the parameters of the approaches used. This set also consists of
10% of different problem instances from the PSPLIB set. The test set consists
of the remaining instances from PSPLIB, 1428 problem instances that were used355

to compare the proposed approaches. Problem instances from all 4 groups were
equally represented in all sets used (depending on the size of the set), and all
four sets are mutually disjoint. This division was made based on the research
conducted in Dumić (2020).

4.2. GP parameters360

The values of the parameters used by GP are given in Table 1, which are
taken from Dumić (2020).

Table 1: Parameters for the GP

Parameter Value
Number of generations 25
Population size 1024
Mutation probability 0.3
Maximum tree depth 5
Tournament size 7

4.3. Fitness functions

Two different fitness functions are used as criteria for the optimization, based
on the works Dumić et al. (2018) and Chand et al. (2018). The first, F1, is given
by the expression:

F1 =

N∑
i=1

Ci

pavgi · √ni
N

, (4)

11



where Ci is the achieved makespan of the i-th problem instance, pavgi is the
average activity duration, ni is the number of activities in the i-th problem
instance, and N is the number of project instances in the set for which the
fitness value is calculated. The second fitness function used is F2, which is given
by the following expression:

F2 =
1

N

(
N∑
i=1

(
Ci − Li

Li
· 100

))
, (5)

where Li is the lower bound for the i-th problem instance computed by omitting
the resource constraints in the original problem. The function F2 is expressed365

as a percentage.
The fitness functions defined above are used in the GP evolving process. In

each iteration of GP, the fitness of individuals is calculated using the fitness
function F1 or F2 and the learning set described in 4.1. After the termination
criteria are satisfied, the individual that achieves the best fitness value on the370

validation set also defined in 4.1 is returned as the final priority rule.

4.4. Terminal and function sets

The set of primitives used in this paper is given in Table 2 and Table 3.
Terminal and function sets are taken from Dumić (2020). Based on tests per-
formed in previous studies (mentioned in section 2.3), terminal values are not375

normalized, an arithmetic representation is used for individuals, and PSGS is
used for the generation scheme.

Table 2: Function set

Function name Definition
+, -, * addition, subtraction and multiplication

/ protected division:

DIV (a, b) =

{
1, |b| < 0.000000001
a
b , else.

MAX MAX(a, b) =

{
a, a > b

b, else.

MIN MIN(a, b) =

{
a, a < b

b, else.

APS absolute value
NEG NEG(a) = (−1) · a

With respect to the fitness functions F1 and F2 for IPR, three additional
terminals are introduced, listed in the Table 4. The introduced terminals contain
simple information such as the time of completion of the activity, the waiting380

time for scheduling, and the distance of the project duration from the lower

12



Table 3: Terminal set

Terminal Description
ARU average resource usage
DPC number of direct predecessors

GRPW greatest rank positional weight all
LF latest activity finish
LS latest activity start

NSP number of scheduled predecessors
NUA number of unprocessed activities
TD total project duration (horizon)

TNA total number of activities (not including dummies)

bound of the problem. These specific terminals were chosen because they are
related to fitness functions. The time of completion of the activities and the
waiting time of the activities for scheduling affect the total duration of the
project, which is the only variable in the function F1, while the distance of the385

project duration from the lower boundary of the problem is contained in the
function F2.

Table 4: New terminals for IPR

Terminal Description

ActFin finish time of activity
ActWait waiting time for scheduling activity
LBDist the distance of the project duration from the lower bound

For all three introduced terminals, smaller values lead to a better solution.
To avoid stopping the evolution process in the first iteration, their initial value
must be set to a number higher than the values that can be reached for each390

terminal. In this paper, the project horizon is used as the initial value for all
three terminals. In the experiments conducted, the project horizon is calculated
by summing the duration of all activities in the project, i.e., by scheduling each
activity alone without the possibility of another activity being processed at the
same time. Since only 3 terminals were introduced, their effects on the outcome395

are studied separately and in all combinations with each other. The number of
combinations to be tested in this case is 7.

4.5. Comparison and statistical test

In this paper, tests for IPR and rollout approach, mentioned in the previous
sections, will be performed. The number of runs for both approaches will be400

30. The significance of the obtained results will be examined using the Mann
- Whitney - Wilcoxon (MWW) test at the 0.01 significance level. Since in this

13



work adjusting the PRs for a static environment is considered in this paper, the
results can be compared with metaheuristic methods applicable in a static en-
vironment and GA is used as representative. The values of the parameters used405

by GA are given in Table 5. The parameters were chosen based on experiments,
and the maximum execution time of 10 seconds was chosen as the termination
criterion. This time is still significantly longer than using priority rules, but on
the other hand low enough to be fairly compared with other approaches.

Table 5: Parameters for the GA

Parameter Value

representation floating point
termination time 10 s
population size 200
mutation probability 0.7

5. Results410

5.1. Results for IPR

For each of the 7 combinations determined by the additional terminals used
in IPR, 30 rules were evolved. In evolving the PRs for IPR, the same parameter
values were used as for GP. The only two differences in evolving PRs using this
approach compared to the standard PRs are the use of newly added terminals415

and the adapted SGS. The schedule generation scheme used in IPR was given by
the Algorithm 2. The same scheme is used when evolving PRs and solving new
problem instances with evolved PRs. An additional validation set (validation
set 2) was used to determine which terminal or combination is best for evolving
PRs. The results obtained on validation set 2 for fitness function F1 are shown420

in Table 6 and boxplot in the Figure 1, and for fitness function F2 in Table 7
and boxplot in Figure 2.

Table 6: Results achieved by IPR using fitness function F1

Combination Added Terminals min med max

K1 ActFin 2.04658 2.04997 2.05427
K2 ActWait 2.04333 2.04977 2.05289
K3 LBDist 2.04890 2.05265 2.05610
K4 ActFin, ActWait 2.04632 2.05011 2.05330
K5 LBDist, ActFin 2.04553 2.05031 2.05511
K6 LBDist, ActWait 2.04476 2.04956 2.05885
K7 LBDist, ActFin, ActWait 2.04453 2.05031 2.05423

The significance of the results obtained was examined using the Mann-
Whitney-Wilcoxon (MWW) test with a significance level of 0.05. The MWW

14



●

K1 K2 K3 K4 K5 K6 K7

2.
04

0
2.

04
5

2.
05

0
2.

05
5

2.
06

0

Figure 1: Results achieved by IPR using fitness function F1

test did not discover a significant difference in the results when using different425

terminals or a combination of those. To decide which combination to use, the
given boxplots were used. The boxplots can be used to determine the combina-
tion of terminals for which the results are less scattered.

The lowest minimum and maximum is obtained for the fitness function F1

when only the terminal ActWait was added. On the other hand, if the terminal430

LBDist was added together with the terminal ActWait, a slightly smaller median
was obtained than when only the terminal ActWait was added. It is interesting
to note that in both cases the ActWait terminal was used, which means that
the waiting time for the execution of the activity significantly affects the quality
of the obtained solution when using the F1 function. Since the difference in435

the obtained medians between these two cases is small and that between the
minima and maxima is slightly larger, only the terminal ActWait is added to
the terminal set when the function F1 is used for IPR.

Table 7: Results achieved by IPR using fitness function F2

Combination Added Terminals min med max

K1 ActFin 23.70156 23.91941 24.21187
K2 ActWait 23.64329 23.92800 24.18997
K3 LBDist 23.62028 24.09754 24.44826
K4 ActFin, ActWait 23.60090 23.90161 24.41879
K5 LBDist, ActFin 23.67911 23.98847 24.26429
K6 LBDist, ActWait 23.51636 23.89635 24.23332
K7 LBDist, ActFin, ActWait 23.54966 23.83336 24.19158

15



●

K1 K2 K3 K4 K5 K6 K7

23
.6

23
.8

24
.0

24
.2

24
.4

Figure 2: Results achieved by IPR using fitness function F2

The decision of which terminal or combination to include in the terminal set
when using function F2 was also made based on the given boxplot. For function440

F2, three combinations need to be closely observed: introducing only the ter-
minal ActWait, introducing the terminals ActWait and LBDist simultaneously,
and introducing all three terminals. By introducing only the terminal ActWait,
the lowest maximum will be achieved. If the ActWait and LBDist terminals
are introduced simultaneously, the lowest minimum is obtained, and the lowest445

median is obtained if all three terminals are used. The obtained results are less
scattered when only the terminal ActWait is added, but the scatter of results
when all three terminals are introduced comes from improved results. If all three
terminals are introduced, the maximum will be slightly higher than the lowest
achieved. At the same time, the minimum will be significantly lower than that450

obtained with the other combinations. Accordingly, all three features should be
introduced for the function F2.

Given the parts from which the function F2 function consists, it is expected
that the terminal LBDist should be added to the terminal set. However, it is
interesting to note that adding only the terminal LBDist to the terminal set leads455

to worse results than any other combination of added terminals. This terminal
produces better results only when combined with the ActWait terminal. It is
interesting that when using the F2 function, the ActWait terminal significantly
impacts the result, as it did with the F1 function.

5.2. Results for the RollOut Approach460

In the rollout approach, if there are already evolved PRs, there is no need
to evolved new PRs, which was not the case when IPR was used. This is one

16



of the advantages of this approach. Before using this approach, you must not
only choose which PR to use, but also determine the number of activities to
consider in the decision process. Several options were explored to determine465

the optimal number of activities. The results obtained for validation set 2
can be found in Table 8 for function F1 and in Table 9 for function F2. The
corresponding boxplots can be found in Figure 3 and Figure 4 for functions F1

and F2, respectively.
The number of activities considered in the decision process is indicated in470

the first column of the results shown. The case where all available activities are
considered is indicated by ∞ in the tables and Inf in the figures.

Table 8: Results achieved by rollout approach using the fitness function F1

No. of activities min med max

3 2.02498 2.02766 2.03061
5 2.02203 2.02406 2.02650
7 2.02067 2.02293 2.02550
10 2.01996 2.02217 2.02524
15 2.01914 2.02123 2.02423
20 2.01895 2.02098 2.02396
30 2.01904 2.02088 2.02396
50 2.01904 2.02088 2.02396
∞ 2.01904 2.02088 2.02396

Table 9: Results achieved by rollout approach using the fitness function F2

No. of activities min med max

3 22.42286 22.59419 22.73496
5 22.18898 22.36952 22.48702
7 22.12095 22.31179 22.4193
10 22.05667 22.24839 22.34631
15 22.01565 22.20643 22.30097
20 22.00902 22.18432 22.30097
30 22.00222 22.18131 22.2884
50 22.00222 22.18131 22.2884
∞ 22.00222 22.18131 22.2884

The results obtained with the fitness function F1 and the fitness function
F2 show similar behavior. The quality of the obtained results depends on the
number of observed activities when making decisions. An increase in the number475

of activities considered at the time of the decision initially leads to significant
improvements in the results, while the obtained value stabilizes after a certain
number. One of the possible reasons for this behavior is the fact that activities
that have a low priority and are not considered in the decision making process

17



3 5 7 10 15 20 30 50 In
f

2.018

2.020

2.022

2.024

2.026

2.028

2.030

2.032

Figure 3: Results achieved by rollout approach using the fitness function F1

18



3 5 7 10 15 20 30 50 In
f

22.0

22.2

22.4

22.6

Figure 4: Results achieved by rollout approach using the fitness function F2

19



are not those that need to be considered. The second possible reason is that480

the number of activities considered is greater than the number of activities
available, and all available activities have already been considered. Although
the best results are obtained when we consider all available activities at the
time of decision, increasing the number of activities considered increases the
time needed to find a solution.485

The time needed for the evaluation depending on the number of activities
considered at the time of the decision is given in Table 10 and the graph in Fig-
ure 5. The results for time are given in seconds and refer to the time required
to evaluate all 204 instances included in the validation set used. As expected,
the time required for evaluation increases as the number of activities considered490

increases. It is important to note that the time required for evaluation stops in-
creasing after a certain number of activities. This cessation of the time increase
occurs when the same number of activities is observed at which the performance
improvements stop. This phenomenon was investigated in more detail by ad-
ditional experiments. In the experiments, the number of available activities at495

each decision point was noted. Since the number of available activities may
be different for different numbers of activities considered, the experiments were
conducted for 20 and 30 activities considered, which was detected to be crucial
in determining the stabilization time point. The results obtained in 30 runs are
shown in Table 11 and are identical for functions F1 and F2.500

Table 10: Time required to evaluate instances of a validation set depending on the number of
activities considered, given in seconds

No. of activities min med max

3 23 24.5 26
5 28 35.5 39
7 42 45.5 50
10 43 55 59
15 58 63 71
20 58 65 74
30 60 67 75
50 52 65 80
∞ 59 66 79

Table 11: The number of available activities in the rollout approach when 20 and 30 activities
were considered

No. of activities min med max

20 1 3 31
30 1 3 30

The results given show that the maximum number of available activities
at any decision point is 31 for 20 observed activities and 30 for 30 observed

20



Figure 5: Time required to evaluate instances of a validation set depending on the number of
activities considered

Figure 6: Relation between the value of the F1 function and the time required to evaluate the
instances of the test set depending on the number of activities considered

21



activities. At the same time, the median is much smaller and is 3 in both
cases. It can be concluded that the results stop improving and the time stop
increasing because when 30 activities are considered at any decision point, all505

available activities are considered. For this reason, it does not matter whether
we set the number of activities to consider to 30 or more activities or consider
all available activities.

Although the time required to evaluate instances from the validation set
when all available activities are considered is no more than 1.5 minute, it is510

significantly longer than the time required to evaluate when a smaller number
of activities are considered. For example, consider all available activities at each
decision point. The time required for evaluation is on average almost 3 times
greater than the time required when only 3 activities are considered.

To further analyze the number of activities available at the time of the515

decision, Table 12 shows the number of activities available for groups of instances
within the validation set when using function F1. The instances within the
validation set are divided into groups of 30, 60, 90, and 120 activities within
the project. The results show that the median is lower for instances with 30,
60, and 90 activities than for those with 120 activities. Further analysis of this520

approach considers two limiting cases, 3 and ∞. However, based on the results
in Table 12, it is reasonable to consider the case where 7 activities are considered
at each point in the decision for instances with 120 activities. The results for
the F2 function are similar and are not considered in this paper.

Table 12: The number of activities available when problem instances are grouped by the
number of activities

No of considered activities No of activities in project instance 30 60 90 120

20

min 1 1 1 1
med 2 2 3 7
max 8 13 21 31

30

min 1 1 1 1
med 2 2 3 7
max 8 13 21 30

5.3. Comparison of results525

In this paper, two adaptations have been proposed for the development of
PRs for a static environment. In a static environment, all the information
is available and known, so it is expected that the PRs evolved using these ap-
proaches will produce significantly better results in such situations than the PRs
that can only be applied in a dynamic environment (dynamic PRs). Since these530

approaches were evolved for a static environment, it is possible to compare the
results with other metaheuristic approaches used to solve RCPSP. In this paper,
the Genetic Algorithm (GA) was chosen as a representative of the metaheuristic
approaches. When comparing the results obtained by different methods, it is

22



necessary to compare the time required to find a solution. Accordingly, this535

section compares the results obtained by dynamic PRs, PRs evolved with the
proposed adaptations, and GA as representatives of the metaheuristic methods.
Given the need to consider the time required to find a solution, two extreme
cases are considered for the rollout approach - when three activities are consid-
ered (RollOut-3) and when all available activities are considered at each decision540

point (RollOut-∞). In addition, a comparison is made for the approach where
rollout was used in rule development (RollOut PR). Due to the long duration of
rule development when using the rollout approach, the priority rules for rollout
were evolved with only three activities considered in the decision points. In
addition, the parameters from the Chand et al. (2019) were used for the evolu-545

tion of the PRs, i.e., the population size was set to 200 and a maximum of 20
generations as the stopping criterion.

The results obtained for all these methods on the test set can be found in
Table 13 for function F1 and in Table 14 for function F2. The corresponding
boxplots can be found in the Figure 7 for F1 and in the Figure 8 for F2.550

From the results presented, it is evident that the methods used behave quite
similarly regardless of the fitness function. The results obtained with the IPR
and the rollout approach achieve significantly better results than those achieved
by dynamic PRs. This behavior is to be expected since the schedule is created
multiple times in both adjustments proposed in this paper. With IPR, the555

initial schedule is improved through iterations. At the same time, in the rollout
approach, several possible directions are considered and the best one is selected
based on the created schedules.

Interestingly, the results of rollOut-3 and rollOut PR are not statistically
different regardless of the fitness function, which means that PRs evolved with560

standard SGS can be as good as those evolved with the rollout part in SGS.
Among the proposed approaches, rollout-∞ achieves the best results, and com-
pared to the other approaches, this difference is statistically significant. Al-
though IPR achieves statistically significantly worse results than the rollout
approach, the results obtained with it are statistically significantly better than565

those obtained with dynamic PRs and GA.

Table 13: Comparison of results obtained by different methods using the F1 function

Method min med max

IPR 2.03211 2.03576 2.03806
RollOut-3 2.00910 2.01225 2.01477
RollOut-∞ 2.00288 2.00522 2.00755
RollOut PR 2.01010 2.01285 2.0167

GP 2.05052 2.05261 2.05599
GA 2.05457 2.07406 2.08144

The time required to evolve a PR using the standard SGS, the SGS adapted
for the IPR approach, and the SGS using the rollout approach is given in Table

23



IPR RollOut−3 RollOut−Inf RollOut−PR GP GA

2.
00

2.
02

2.
04

2.
06

2.
08

Figure 7: Comparison of results obtained by different methods using the F1 function

Table 14: Comparison of results obtained by different methods using the F2 function

Method min med max

IPR 23.43823 23.65492 23.84060
RollOut-3 22.03836 22.24841 22.36618
RollOut-∞ 21.62626 21.80197 21.88470
RollOut PR 22.07612 22.24631 22.38901

GP 24.55235 24.7202 24.85042
GA 24.97819 26.20198 26.65415

Table 15: Time required for evolving PRs depending on the method used

Method
duration (s)

on average per generation in total

GP 139.34 3483.43
IPR 458.54 11463.60

RollOut 6773.67 135473.30

24



IPR RollOut−3 RollOut−Inf RollOut−PR GP GA

22
23

24
25

26

Figure 8: Comparison of results obtained by different methods using the F2 function

Table 16: Time required for solving problem instances in test set depending on the method
used

Method
duration (s)

in total on average per instance

IPR 79.33 0.06
RollOut-3 174.03 0.12
RollOut-∞ 431.74 0.30
RollOut PR 321.00 0.22

GP 32.67 0.02
GA 14280 10.00

25



Figure 9: Time required for solving problem instances in test set depending on the method
used in log scale

15. The time in the table represents the average value obtained in 30 runs. The
average time required for one generation and the total time required to evolve570

a rule are given in the table. The results presented show that it takes less than
an hour to evolve a rule using the standard SGS and slightly more than 3 hours
using the IPR approach. The rollout approach used in SGS for evolving PRs
takes almost 38 hours on average, which is a large increase over the first two
approaches. Also, it is important to note that this approach uses a rollout that575

considers only 3 activities at each decision point, a smaller population size, and
a smaller number of generations. Moreover, any increase in these parameters
would lead to a significant increase in the duration of the evolution of the rule,
and even this time is problematic to apply. When using PRs, the rules can be
evolved in advance regardless of the method used to evolve them, so the time580

required to evolve the rules does not affect the time required to find a solution
to new problem instances.

The time needed to solve new problem instances is more important to ob-
serve, and is shown in Table 16 and Figure 9. The table shows the times needed
to solve all instances from the test set, which consists of 1428 instances.585

When PR is used with the standard SGS, it takes about 33 seconds to solve
the entire test set, which averages to 0.02 seconds per instance. When using the
IPR approach, this time is about 3 times longer. From this, it can be seen that
the ratio of the time required when using the dynamic PR and IPR is practically
the same when solving new instances and evolving new PRs. Since the SGS used590

in IPR differs from the standard SGS only in the number of iterations, it can
be concluded that IPR performs on average 3 iterations in each evaluation.

The rollout approach takes significantly more time to find a solution than

26



the previous two approaches. However, the time required to solve an instance
is less than half a second on average, regardless of the number of activities595

considered. The time taken to solve instances within the test set shows that the
time taken to solve instances using GA is kept low, but is still longer than the
time taken for the approaches proposed in this paper. It is important to note
that while the execution time for GA is longer than for the other approaches,
this does not lead to better results. It should be noted that parallelization was600

not used in these comparisons, which is possible in some parts and reduces the
time required to find a solution. However, the ratio of time required for the
approaches used in this work remains similar to that shown here.

5.4. Further analysis based on the number of activities in instances

The previous subsection presented the results obtained for the entire test605

set. The test set is defined in section 4.1 and consists of 336 instances with
30, 60 and 90 activities and 420 instances with 120 activities. To get a better
insight into the results and quality of the presented approaches, in this section
we show the results obtained with subsets of the test set created based on the
number of activities. The first subset consists of instances of the test set with610

30 activities (j30), the second of those with 60 activities (j60), the third of those
with 90 activities (j90), and the fourth of those with 120 activities (j120).

In addition to the approaches compared in the previous subsection, for in-
stances with 120 activities, we present the results obtained with the rollout ap-
proach, where 7 activities are considered at each decision point. This approach615

was added because 7 was identified as the median for this group of instances in
Table 12.

The comparison of results explained earlier can be found in Table 17 for
function F1 and in Table 18 for function F2. The results for the functions
F1 and F2 show an interesting behavior of the compared approaches. For all620

approaches, it can be seen that the worst results were obtained for instances with
120 activities, while surprisingly the best results were obtained for instances with
90 activities. Also, the results for instances with 30 activities are worse than
those for instances with 60 activities.

The MWW test shows a significant difference in the results between the625

IPR and the rollout approach with respect to the GP for all groups of instances
for F1 and F2. In addition, all observed variants of the rollout approach are
statistically significantly better than IPR for all groups of instances for both
objective functions. For function F1 and instance group j30, there is no sta-
tistically significant difference in the results obtained when 3 or all available630

activities are observed in the rollout, or when rollout with 3 activities was used
in rule development. For groups j60, j90 and j120, rollOut-∞ achieves statisti-
cally significantly better results than rollOut-3 and rollOut PR, while rollOut-3
is better than rollOut PR for j60 and j90. For j120, note that rollOut-7 is sta-
tistically significantly better than rollOut-3 and statistically significantly worse635

than rollOut-∞. When we compare GA with rollOut-∞ as the best perform-
ing approach, we find that rollOut-∞ performs better than GA for all instance
groups except j30. The differences in the results are statistically significant. GA

27



compared to IPR shows statistically significantly worse results for groups j90
and j120.640

Similarly, for F2 IPR and RollOut-∞ perform statistically significantly bet-
ter than GA only for j120 . From the given results, it is easy to see that GA
performs better for sets with instances with fewer activities. Thus, we can con-
clude that 10 seconds is enough for GA to go in the right direction for instances
with less activity, while this time is too short for instances with 120 activity.645

Thus, we can conclude that the approaches proposed in this paper perform
significantly better for larger instances in a shorter time than GA.

Table 17: Results obtained on the instances of the test set grouped by the number of activities
using the fitness function F1

IPR RollOut-3 RollOut-7 RollOut-∞ RollOut PR GP GA

j30

min 2.01200 1.99440 1.99430 1.99660 2.03276 1.95690
med 2.01800 2.00030 1.99940 1.99940 2.03830 1.95898
max 2.02480 2.00490 2.00250 2.00560 2.04306 1.96195

j60

min 1.95140 1.93050 1.92590 1.93190 1.96458 1.91703
med 1.95525 1.93320 1.92880 1.93400 1.96734 1.93256
max 1.95820 1.93690 1.93180 1.93810 1.97099 1.94729

j90

min 1.89830 1.87950 1.87520 1.88210 1.90817 1.91776
med 1.90050 1.88260 1.87750 1.88360 1.91330 1.93220
max 1.90340 1.88610 1.88080 1.88690 1.91645 1.93912

j120

min 2.21480 2.18410 2.1758 2.16960 2.18430 2.24007 2.93773
med 2.22275 2.18920 2.18035 2.17360 2.18900 2.24543 2.99087
max 2.22770 2.19380 2.1848 2.17770 2.19800 2.25295 3.01025

6. Conclusion

Because of their speed, simplicity, and ability to respond to change, PRs are
used primarily in a dynamic environment. Their use in a static environment is650

often absent because the quality of the solutions obtained is usually worse than
the quality of the solutions obtained by other metaheuristic approaches. Nev-
ertheless, there are situations where PRs are also used in a static environment.
Mostly, these are situations where the speed with which a solution is found
is much more important than the quality obtained, or in systems in which,655

regardless of available information, some changes can occur,e.g., the machine

28



Table 18: Results obtained on the instances of the test set grouped by the number of activities
using the fitness function F2

IPR RollOut-3 RollOut-7 RollOut-∞ RollOut PR GP GA

j30

min 17.19200 16.13600 16.13000 16.14200 18.34782 11.10473
med 17.50550 16.41950 16.33600 16.39300 18.64064 11.20617
max 18.08800 16.66600 16.52300 16.67700 18.95526 11.34601

j60

min 16.12400 14.93500 14.68900 14.95500 16.96477 11.28168
med 16.34100 15.04200 14.77550 15.11600 17.17010 12.05095
max 16.49500 15.15000 14.84300 15.36500 17.40501 12.76632

j90

min 14.51900 13.56800 13.22400 13.50100 15.30428 12.66450
med 14.72150 13.68700 13.36900 13.70900 15.50960 13.36472
max 14.88200 13.83100 13.54100 13.81100 15.67000 13.68257

j120

min 41.25300 38.97000 38.439 38.07700 39.11400 42.63614 49.75563
med 41.56550 39.56300 38.9525 38.54500 39.51400 43.02796 52.45914
max 42.00100 39.75400 39.174 38.78400 39.64000 43.32689 53.42624

29



may break down, the worker is on sick leave, and the similar. For this reason,
this paper analyzes how PRs can be adjusted to achieve better results with the
information available in a static environment.

Two adaptation approaches of the evolving process of PRs in a static envi-660

ronment are analyzed - iterative priority rules (IPR) and rollout approach. In
IPR the schedule is improved by iterations using information from the previous
iteration, so it is necessary to ensure the transfer of information from one iter-
ation to the next. This transfer is accomplished by introducing new terminals
into the terminal set. In this paper, three new terminals are presented and665

analyzed that contain helpful information from the previous iteration. Also, de-
pending on the objective function used, it was analyzed which terminals should
be introduced to achieve the best results. The rollout approach considers mul-
tiple activities at each decision point. The decision on which activity to choose
is made by creating several schedules and selecting the best among them. The670

paper analyzes how the number of activities considered affects the quality of the
solution and the time needed to find the solution, and whether it is important
to use a rollout part in the development of PRs.

Moreover, the results for the proposed approaches are compared with those
obtained with dynamic PRs and the GA as a representative of metaheuristic675

approaches that can be used in a static environment. To allow a fair comparison,
GA was limited to 10 seconds for each instance. This time is more than 10 times
longer than that required for the approaches presented in this paper. When GA
is limited in this way, the approaches proposed in this work achieve significantly
better results.680

The results obtained with the proposed approaches show that the standard
PRs can be improved by using additional information available in the static
environment. These results open numerous new topics for further research.
It needs to be investigated whether other modification could further improve
the results. Next, it needs to be investigated whether the approaches used in685

this work can be further adapted, e.g., by using a different schedule generation
scheme. Regardless of the direction of further research, it is necessary to figure
out how to use as much information as possible from a static environment with-
out significantly increasing the time needed to find a solution, which is currently
the biggest advantage of PRs.690

Acknowledgment

The research in this paper was supported by HRZZ project Hyperheuristic
Design of Dispatching Rules (HyDDRa) No. 4333. Any conclusions or recom-
mendations stated herein are those of the authors and do not necessarily reflect
the official positions of the organizations involved in this project.695

30



References

Abdolshah, M. (2014). A review of resource-constrained project scheduling
problems (rcpsp) approaches and solutions. International Transaction Journal
of Engineering, Management, Applied Sciences and Technologies, .

Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the multi-mode resource-700

constrained project scheduling problem with genetic algorithms. The Journal
of the Operational Research Society , 54 , 614–626.

Artigues, C., Demassey, S., & Neron, E. (2008). Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. ISTE/Wiley.

Bader-El-Den, M., Poli, R., & Fatima, S. (2009). Evolving timetabling heuris-705

tics using a grammar-based genetic programming hyper-heuristic frame-
work. Memetic Computing , 1 , 205. URL: https://doi.org/10.1007/

s12293-009-0022-y. doi:10.1007/s12293-009-0022-y.

Beham, A., Kofler, M., Wagner, S., & Affenzeller, M. (2009). Agent-based
simulation of dispatching rules in dynamic pickup and delivery problems. In710

2009 2nd International Symposium on Logistics and Industrial Informatics
(pp. 1–6). doi:10.1109/LINDI.2009.5258763.

Bertsekas, D. P. (2013). Rollout algorithms for discrete optimization: A survey.
In P. M. Pardalos, D.-Z. Du, & R. L. Graham (Eds.), Handbook of Combina-
torial Optimization (pp. 2989–3013). New York, NY: Springer New York.715

Bertsekas, D. P., & Castanon, D. A. (1998). Rollout algorithms for stochastic
scheduling problems. In Proceedings of the 37th IEEE Conference on Decision
and Control (Cat. No.98CH36171) (pp. 2143–2148). volume 2.

Bertsekas, D. P., & Castanon, D. A. (1999). Rollout algorithms for stochastic
scheduling problems. Journal of Heuristics, 5 , 89–108.720

Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to
resource constraints: classification and complexity. Discrete Applied Mathe-
matics, 5 , 11–24.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., &
Qu, R. (2013). Hyper-heuristics: a survey of the state of the art. Journal of725

the Operational Research Society , 64 , 1695–1724. URL: https://doi.org/
10.1057/jors.2013.71. doi:10.1057/jors.2013.71.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Woodward,
J. R. (2010). A classification of hyper-heuristic approaches. In M. Gendreau,
& J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp. 449–468). Boston,730

MA: Springer US. URL: https://doi.org/10.1007/978-1-4419-1665-5_
15. doi:10.1007/978-1-4419-1665-5_15.

31

https://doi.org/10.1007/s12293-009-0022-y
https://doi.org/10.1007/s12293-009-0022-y
https://doi.org/10.1007/s12293-009-0022-y
http://dx.doi.org/10.1007/s12293-009-0022-y
http://dx.doi.org/10.1109/LINDI.2009.5258763
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1057/jors.2013.71
https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-1-4419-1665-5_15
http://dx.doi.org/10.1007/978-1-4419-1665-5_15


Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., & Wood-
ward, J. R. (2009). Exploring hyper-heuristic methodologies with genetic
programming. In C. L. Mumford, & L. C. Jain (Eds.), Computational735

Intelligence: Collaboration, Fusion and Emergence (pp. 177–201). Berlin,
Heidelberg: Springer Berlin Heidelberg. URL: https://doi.org/10.1007/
978-3-642-01799-5_6. doi:10.1007/978-3-642-01799-5_6.

Burke, E. K., Hyde, M. R., Kendall, G., & Woodward, J. (2012). Automating
the packing heuristic design process with genetic programming. Evolutionary740

Computation, 20 , 63–89. PMID: 21609273.

Chakrabortty, R. K., Rahman, H. F., & Ryan, M. J. (2020). Efficient prior-
ity rules for project scheduling under dynamic environments: A heuristic ap-
proach. Computers and Industrial Engineering , 140 , 106287. URL: https://
doi.org/10.1016/j.cie.2020.106287. doi:10.1016/j.cie.2020.106287.745

Chand, S. (2018). Automated Design of Heuristics for the Resource Constrained
Project Scheduling Problem. Ph.D. thesis School of Engineering and Informa-
tion Technology The University of New South Wales Australia.

Chand, S., Huynh, Q., Singh, H., Ray, T., & Wagner, M. (2018). On the use of
genetic programming to evolve priority rules for resource constrained project750

scheduling problems. Information Sciences, 432 , 146 – 163.

Chand, S., Singh, H., & Ray, T. (2019). Evolving rollout-justification based
heuristics for resource constrained project scheduling problems. Swarm and
Evolutionary Computation, 50 , 100556.

Chen, H. J., Ding, G., Qin, S., & Zhang, J. (2020). A hyper-heuristic755

based ensemble genetic programming approach for stochastic resource con-
strained project scheduling problem. Expert Systems with Applications, (p.
114174). URL: https://doi.org/10.1016/j.eswa.2020.114174. doi:10.
1016/j.eswa.2020.114174.

Espejo, P. G., Ventura, S., & Herrera, F. (2010). A survey on the application760

of genetic programming to classification. Trans. Sys. Man Cyber Part C , 40 ,
121–144. URL: http://dx.doi.org/10.1109/TSMCC.2009.2033566. doi:10.
1109/TSMCC.2009.2033566.

Frankola, T., Golub, M., & Jakobović, D. (2008). Evolutionary algorithms for
the resource constrained scheduling problem. In 30th International Confer-765

ence on Information Technology Interfaces.

Gargiulo, F., & Quagliarella, D. (2012). Genetic algorithms for the resource
constrained project scheduling problem. In 13th IEEE International Sympo-
sium on Computational Intelligence and Informatics (pp. 39–47). Budapest,
Hungary.770

32

https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-642-01799-5_6
http://dx.doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1016/j.cie.2020.106287
https://doi.org/10.1016/j.cie.2020.106287
https://doi.org/10.1016/j.cie.2020.106287
http://dx.doi.org/10.1016/j.cie.2020.106287
https://doi.org/10.1016/j.eswa.2020.114174
http://dx.doi.org/10.1016/j.eswa.2020.114174
http://dx.doi.org/10.1016/j.eswa.2020.114174
http://dx.doi.org/10.1016/j.eswa.2020.114174
http://dx.doi.org/10.1109/TSMCC.2009.2033566
http://dx.doi.org/10.1109/TSMCC.2009.2033566
http://dx.doi.org/10.1109/TSMCC.2009.2033566
http://dx.doi.org/10.1109/TSMCC.2009.2033566


Guo, W., Vanhoucke, M., Coelho, J., & Luo, J. (2020). Automatic de-
tection of the best performing priority rule for the resource-constrained
project scheduling problem. Expert Systems with Applications, (p.
114116). URL: https://doi.org/10.1016/j.eswa.2020.114116. doi:10.
1016/j.eswa.2020.114116.775

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of
the resource-constrained project scheduling problem. European Journal of
Operational Research, 207 , 1–14.

Hildebrandt, T., Heger, J., & Scholz-Reiter, B. (2010). Towards improved
dispatching rules for complex shop floor scenarios: A genetic programming780

approach. In Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation GECCO ’10 (p. 257–264). New York, NY, USA:
Association for Computing Machinery.

Hindi, K. S., Yang, H., & Fleszar, K. (2002). An evolutionary algorithm for
resource-constrained project scheduling. Evolutionary Computation, IEEE785

Transactions on, 6 , 512–518.

Hunt, R., Johnston, M., & Zhang, M. (2014). Evolving machine-specific dis-
patching rules for a two-machine job shop using genetic programming. In
2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 618–625).

Jakobović, D., & et al. (2020). Evolutionary computation framework. URL:790

http://ecf.zemris.fer.hr/.

Jakobović, D., & Budin, L. (2006). Dynamic scheduling with genetic program-
ming. In P. Collet, M. Tomassini, M. Ebner, S. Gustafson, & A. Ekárt (Eds.),
Genetic Programming (pp. 73–84). Berlin, Heidelberg: Springer Berlin Hei-
delberg.795

Jakobović, D., & Marasović, K. (2012). Evolving priority scheduling heuristics
with genetic programming. Applied Soft Computing , 12 , 2781 – 2789.

Kadam, S., & Kadam, N. (2014). Solving resource-constrained project schedul-
ing problem by genetic algorithms. Business and Information Management
(ICBIM), (pp. 159–164).800

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation. European Journal of Opera-
tional Research, 90 , 320–333.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-
constrained project scheduling problem: Classification and computational805

analysis. In J. Weglarz (Ed.), Project Scheduling: Recent Models, Algorithms
and Applications (pp. 147–178). Boston, MA: Springer US.

33

https://doi.org/10.1016/j.eswa.2020.114116
http://dx.doi.org/10.1016/j.eswa.2020.114116
http://dx.doi.org/10.1016/j.eswa.2020.114116
http://dx.doi.org/10.1016/j.eswa.2020.114116
http://ecf.zemris.fer.hr/


Kolisch, R., & Sprecher, A. (1997). Psplib - a project scheduling problem library:
Or software - orsep operations research software exchange program. European
Journal of Operational Research, 96 , 205 – 216.810

Kolisch, R., Sprecher, A., & Drexel, A. (2001). Characterization and generation
of a general class of resource-constrained project scheduling problems, .

Koza, J. R. (1990). Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers815

by Means of Natural Selection. Cambridge, MA, USA: MIT Press.

Koza, J. R., III, F. H. B., Andre, D., & Keane, M. A. (1996). Four problems for
which a computer program evolved by genetic programming is competitive
with human performance. In Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, (pp. 1–10). IEEE Press volume 1.820

Kumar, R., Joshi, A. H., Banka, K. K., & Rockett, P. I. (2008). Evolution of
hyperheuristics for the biobjective 0/1 knapsack problem by multiobjective
genetic programming. In Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation GECCO ’08 (pp. 1227–1234). New York,
NY, USA: ACM. URL: http://doi.acm.org/10.1145/1389095.1389335.825

doi:10.1145/1389095.1389335.

Lin, J., Zhu, L., & Gao, K. (2020). A genetic programming hyper-heuristic
approach for the multi-skill resource constrained project scheduling problem.
Expert Systems with Applications, 140 , 112915. URL: https://doi.org/10.
1016/j.eswa.2019.112915. doi:10.1016/j.eswa.2019.112915.830

Merkle, D., Middendorf, M., & Schmeck., H. (2002). Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation, 6 , 333–346.

Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2013). A computational
study of representations in genetic programming to evolve dispatching rules835

for the job shop scheduling problem. IEEE Transactions on Evolutionary
Computation, 17 , 621–639.

Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2013). Learning iterative
dispatching rules for job shop scheduling with genetic programming. The
International Journal of Advanced Manufacturing Technology , 67 , 85–100.840

Oltean, M., & Dumitrescu, D. (2004). Evolving tsp heuristics using multi ex-
pression programming. In M. Bubak, G. D. van Albada, P. M. A. Sloot,
& J. Dongarra (Eds.), Computational Science - ICCS 2004 (pp. 670–673).
Berlin, Heidelberg: Springer Berlin Heidelberg.

34

http://doi.acm.org/10.1145/1389095.1389335
http://dx.doi.org/10.1145/1389095.1389335
https://doi.org/10.1016/j.eswa.2019.112915
https://doi.org/10.1016/j.eswa.2019.112915
https://doi.org/10.1016/j.eswa.2019.112915
http://dx.doi.org/10.1016/j.eswa.2019.112915


Čorić, R., Dumić, M., & Jakobović, D. (2017). Complexity comparison of in-845

teger programming and genetic algorithms for resource constrained schedul-
ing problems. In 2017 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO) (pp.
1182–1188).

Özcan, E., & Parkes, A. J. (2011). Policy matrix evolution for generation850

of heuristics. In Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation GECCO ’11 (pp. 2011–2018). New York,
NY, USA: ACM. URL: http://doi.acm.org/10.1145/2001576.2001846.
doi:10.1145/2001576.2001846.

Pillay, N. (2012). Evolving hyper-heuristics for the uncapacitated examination855

timetabling problem. Journal of the Operational Research Society , 63 , 47–58.
URL: https://doi.org/10.1057/jors.2011.12. doi:10.1057/jors.2011.
12.

Poli, R., Langdon, W. B., & McPhee, N. F. (). A field guide to genetic program-
ming.. Published via http://lulu.com and freely available at http://www.gp-860

field-guide.org.uk, 2008, (With contributions by J. R. Koza).

S lowinski, R. (1981). Multiobjective network scheduling with efficient use of
renewable and nonrenewable resources. European Journal of Operational Re-
search, 7 , 265–273.

Dumić, M. (2020). Oblikovanje prioritetnih pravila za problem rasporedivanja s865

ograničenim sredstvima. Ph.D. thesis Faculty of Electrical Engineering and
Computing, University of Zagreb, Zagreb, Croatia.

Dumić, M., Šǐsejković, D., Čorić, R., & Jakobović, D. (2018). Evolving pri-
ority rules for resource constrained project scheduling problem with genetic
programming. Future Generation Computer Systems, 86 , 211 – 221.870

Dumić, M., & Jakobović, D. (2021). Ensembles of priority rules for re-
source constrained project scheduling problem. Applied Soft Computing , 110 ,
107606. URL: https://www.sciencedirect.com/science/article/pii/

S1568494621005275. doi:https://doi.org/10.1016/j.asoc.2021.107606.

Durasević, M., & Jakobović, D. (2020). Automatic design of dispatching rules875

for static scheduling conditions. Neural Computing and Applications, .

Durasević, M., Jakobović, D., & Knežević, K. (2016). Adaptive scheduling on
unrelated machines with genetic programming. Applied Soft Computing , 48 ,
419 – 430.

Valls, V., & Ballest́ın, F. (2004). Population-based approach to the resource-880

constrained project scheduling problem. Annals of Operations Research, 131 ,
305–324.

35

http://doi.acm.org/10.1145/2001576.2001846
http://dx.doi.org/10.1145/2001576.2001846
https://doi.org/10.1057/jors.2011.12
http://dx.doi.org/10.1057/jors.2011.12
http://dx.doi.org/10.1057/jors.2011.12
http://dx.doi.org/10.1057/jors.2011.12
https://www.sciencedirect.com/science/article/pii/S1568494621005275
https://www.sciencedirect.com/science/article/pii/S1568494621005275
https://www.sciencedirect.com/science/article/pii/S1568494621005275
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2021.107606


Vonolfen, S., Beham, A., Kommenda, M., & Affenzeller, M. (2013). Structural
synthesis of dispatching rules for dynamic dial-a-ride problems. In R. Moreno-
Dı́az, F. Pichler, & A. Quesada-Arencibia (Eds.), Computer Aided Systems885

Theory - EUROCAST 2013 (pp. 276–283). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Wittemann, F. (2020). Psplib resource constrained project scheduling problem.
URL: http://www.om-db.wi.tum.de/psplib.

36

http://www.om-db.wi.tum.de/psplib

	Introduction
	Problem Definition and Related Work
	RCPSP
	GP
	Evolving PRs for the RCPSP

	Adaptation approaches for evolving PRs for a static environment
	IPR
	 Rollout approach

	Experimental setup
	Data set
	GP parameters
	Fitness functions
	Terminal and function sets
	Comparison and statistical test

	Results
	Results for IPR 
	Results for the RollOut Approach
	Comparison of results
	Further analysis based on the number of activities in instances

	 Conclusion

