Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1193657

One-net: Convolutional color constancy simplified


Domislović, Ilija; Vršnak, Donik; Subašić, Marko; Lončarić, Sven
One-net: Convolutional color constancy simplified // Pattern recognition letters, 159 (2022), 31-37 doi:10.1016/j.patrec.2022.04.035 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1193657 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
One-net: Convolutional color constancy simplified

Autori
Domislović, Ilija ; Vršnak, Donik ; Subašić, Marko ; Lončarić, Sven

Izvornik
Pattern recognition letters (0167-8655) 159 (2022); 31-37

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Illumination estimation ; Color constancy ; Convolutional neural network ; Image color analysis ; Image processing

Sažetak
Images have an ever-increasing presence in our daily lives. This increases the need for accurate and efficient image processing. One of the first processing steps in modern cameras is image white-balancing, the process of making the image invariant to the illumination of the scene. This can be achieved by estimating the illumination of the scene, which is used to chromatically adapt the image. Many existing state-of-the-art approaches use pre-trained models as feature extractors. These models are pre-trained on ImageNet and usually have several million parameters. In this paper, we introduce a simple convolutional neural network without pre-trained layers, that achieves state-of-the-art results. The model contains five convolutional layers, and all of them have a small kernel of size (1, 1). Experiments with different model complexities and different kernel sizes have shown that high-level semantic information obtained using larger kernels is not required to achieve state-of-the-art results. Cross camera experiments were also performed and they showed that simple image pre-processing can significantly decrease the effect of camera-sensor on the method. The proposed method has less than 22 000 parameters and achieves state-of-the-art results. The model was tested on three different datasets: the Cube+ dataset, the NUS-8 dataset, and the Intel-TAU dataset.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Domislović, Ilija; Vršnak, Donik; Subašić, Marko; Lončarić, Sven
One-net: Convolutional color constancy simplified // Pattern recognition letters, 159 (2022), 31-37 doi:10.1016/j.patrec.2022.04.035 (međunarodna recenzija, članak, znanstveni)
Domislović, I., Vršnak, D., Subašić, M. & Lončarić, S. (2022) One-net: Convolutional color constancy simplified. Pattern recognition letters, 159, 31-37 doi:10.1016/j.patrec.2022.04.035.
@article{article, author = {Domislovi\'{c}, Ilija and Vr\v{s}nak, Donik and Suba\v{s}i\'{c}, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2022}, pages = {31-37}, DOI = {10.1016/j.patrec.2022.04.035}, keywords = {Illumination estimation, Color constancy, Convolutional neural network, Image color analysis, Image processing}, journal = {Pattern recognition letters}, doi = {10.1016/j.patrec.2022.04.035}, volume = {159}, issn = {0167-8655}, title = {One-net: Convolutional color constancy simplified}, keyword = {Illumination estimation, Color constancy, Convolutional neural network, Image color analysis, Image processing} }
@article{article, author = {Domislovi\'{c}, Ilija and Vr\v{s}nak, Donik and Suba\v{s}i\'{c}, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2022}, pages = {31-37}, DOI = {10.1016/j.patrec.2022.04.035}, keywords = {Illumination estimation, Color constancy, Convolutional neural network, Image color analysis, Image processing}, journal = {Pattern recognition letters}, doi = {10.1016/j.patrec.2022.04.035}, volume = {159}, issn = {0167-8655}, title = {One-net: Convolutional color constancy simplified}, keyword = {Illumination estimation, Color constancy, Convolutional neural network, Image color analysis, Image processing} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font