Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1191316

Machine learning determined models of inhibitory activities for fluorinated Cinchona alkaloids


Mikelić, Ana; Ramić, Alma; Primožič, Ines; Hrenar, Tomica
Machine learning determined models of inhibitory activities for fluorinated Cinchona alkaloids // 6. Simpozij studenata doktorskih studija PMF-a: Knjiga sažetaka / 6th Faculty of Science PhD Student Symposium: Book of Abstracts / Schneider, Petra (ur.).
Zagreb: Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, 2022. str. 164-165 (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 1191316 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine learning determined models of inhibitory activities for fluorinated Cinchona alkaloids

Autori
Mikelić, Ana ; Ramić, Alma ; Primožič, Ines ; Hrenar, Tomica

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
6. Simpozij studenata doktorskih studija PMF-a: Knjiga sažetaka / 6th Faculty of Science PhD Student Symposium: Book of Abstracts / Schneider, Petra - Zagreb : Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, 2022, 164-165

ISBN
978-953-6076-93-2

Skup
6. Simpozij studenata doktorskih studija PMF-a = 6th Faculty of Science PhD Student Symposium

Mjesto i datum
Zagreb, Hrvatska, 23.04.2022. - 24.04.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
inhibitory activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression

Sažetak
A series of 25 fluorinated Cinchona alkaloids derivatives was theoretically investigated by calculation of their potential energy surfaces (PES). PES for all compounds were sampled by performing molecular dynamics simulations [1] and then decomposed by principal component analysis. Each PES was represented by three points in the newly determined reduced space. These points were used as independent variables for establishing activity/PES regression models whereas previously measured inhibitory activities towards human acetyl- and butyrylcholinesterase were used as dependent variables. Multivariate linear regression models were built by applying an extensive machine learning protocol where linear combinations of original variables as well as their higherorder polynomial terms were used. Leave-one-out cross- validation (LOO-CV) was used to validate obtained models [2, 3]. Optimal activity/PES models were selected based on the adjusted R 2, predicted R 2 and the LOO-CV mean squared error (Figure 1).

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-3775 - Aktivnošću i in silico usmjeren dizajn malih bioaktivnih molekula (ADESIRE) (Hrenar, Tomica, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Ines Primožič (autor)

Avatar Url Alma Ramic (autor)

Avatar Url Ana Mikelić (autor)

Avatar Url Tomica Hrenar (autor)

Poveznice na cjeloviti tekst rada:

www.pmf.unizg.hr

Citiraj ovu publikaciju:

Mikelić, Ana; Ramić, Alma; Primožič, Ines; Hrenar, Tomica
Machine learning determined models of inhibitory activities for fluorinated Cinchona alkaloids // 6. Simpozij studenata doktorskih studija PMF-a: Knjiga sažetaka / 6th Faculty of Science PhD Student Symposium: Book of Abstracts / Schneider, Petra (ur.).
Zagreb: Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, 2022. str. 164-165 (predavanje, domaća recenzija, sažetak, znanstveni)
Mikelić, A., Ramić, A., Primožič, I. & Hrenar, T. (2022) Machine learning determined models of inhibitory activities for fluorinated Cinchona alkaloids. U: Schneider, P. (ur.)6. Simpozij studenata doktorskih studija PMF-a: Knjiga sažetaka / 6th Faculty of Science PhD Student Symposium: Book of Abstracts.
@article{article, author = {Mikeli\'{c}, Ana and Rami\'{c}, Alma and Primo\v{z}i\v{c}, Ines and Hrenar, Tomica}, editor = {Schneider, P.}, year = {2022}, pages = {164-165}, keywords = {inhibitory activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, isbn = {978-953-6076-93-2}, title = {Machine learning determined models of inhibitory activities for fluorinated Cinchona alkaloids}, keyword = {inhibitory activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, publisher = {Prirodoslovno-matemati\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Mikeli\'{c}, Ana and Rami\'{c}, Alma and Primo\v{z}i\v{c}, Ines and Hrenar, Tomica}, editor = {Schneider, P.}, year = {2022}, pages = {164-165}, keywords = {inhibitory activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, isbn = {978-953-6076-93-2}, title = {Machine learning determined models of inhibitory activities for fluorinated Cinchona alkaloids}, keyword = {inhibitory activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, publisher = {Prirodoslovno-matemati\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font