Pregled bibliografske jedinice broj: 1190395
Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions
Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions // Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 1033 (2022), 166686, 9 doi:10.1016/j.nima.2022.166686 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1190395 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions
Autori
Žugec, Petar ; ... ; Bosnar, Damir ; ... ; Chiaveri, E.
Kolaboracija
N_TOF Collaboration
Izvornik
Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment (0168-9002) 1033
(2022);
166686, 9
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Silicon telescope, Particle recognition, Machine learning, Neutron time of flight, n_TOF facility
Sažetak
The paper explores the feasibility of using machine learning techniques, in particular neural networks, for classification of the experimental data from the joint natC(n, p) and natC(n, d) reaction cross section measurement from the neutron time of flight facility n_TOF at CERN. Each relevant dE-E pair of strips from two segmented silicon telescopes is treated separately and afforded its own dedicated neural network. An important part of the procedure is a careful preparation of training datasets, based on the raw data from Geant4 simulations. Instead of using these raw data for the training of neural networks, we divide a relevant 3-parameter space into discrete voxels, classify each voxel according to a particle/reaction type and submit these voxels to a training procedure. The classification capabilities of the structurally optimized and trained neural networks are found to be superior to those of the manually selected cuts.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-8570 - Elektroni, kaoni i neutroni u preciznim mjerenjima svojstava hadrona i jezgara (EKNpEXP) (Bosnar, Damir, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus