Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1190395

Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions


(n_TOF Collaboration) Žugec, Petar; ...; Bosnar, Damir; ...; Chiaveri, E.
Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions // Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 1033 (2022), 166686, 9 doi:10.1016/j.nima.2022.166686 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1190395 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions

Autori
Žugec, Petar ; ... ; Bosnar, Damir ; ... ; Chiaveri, E.

Kolaboracija
N_TOF Collaboration

Izvornik
Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment (0168-9002) 1033 (2022); 166686, 9

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Silicon telescope, Particle recognition, Machine learning, Neutron time of flight, n_TOF facility

Sažetak
The paper explores the feasibility of using machine learning techniques, in particular neural networks, for classification of the experimental data from the joint natC(n, p) and natC(n, d) reaction cross section measurement from the neutron time of flight facility n_TOF at CERN. Each relevant dE-E pair of strips from two segmented silicon telescopes is treated separately and afforded its own dedicated neural network. An important part of the procedure is a careful preparation of training datasets, based on the raw data from Geant4 simulations. Instead of using these raw data for the training of neural networks, we divide a relevant 3-parameter space into discrete voxels, classify each voxel according to a particle/reaction type and submit these voxels to a training procedure. The classification capabilities of the structurally optimized and trained neural networks are found to be superior to those of the manually selected cuts.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-8570 - Elektroni, kaoni i neutroni u preciznim mjerenjima svojstava hadrona i jezgara (EKNpEXP) (Bosnar, Damir, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Petar Žugec (autor)

Avatar Url Damir Bosnar (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

(n_TOF Collaboration) Žugec, Petar; ...; Bosnar, Damir; ...; Chiaveri, E.
Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions // Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 1033 (2022), 166686, 9 doi:10.1016/j.nima.2022.166686 (međunarodna recenzija, članak, znanstveni)
(n_TOF Collaboration) (n_TOF Collaboration) Žugec, P., ..., Bosnar, D., ... & Chiaveri, E. (2022) Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions. Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 1033, 166686, 9 doi:10.1016/j.nima.2022.166686.
@article{article, author = {\v{Z}ugec, Petar and Bosnar, Damir and Chiaveri, E.}, year = {2022}, pages = {9}, DOI = {10.1016/j.nima.2022.166686}, chapter = {166686}, keywords = {Silicon telescope, Particle recognition, Machine learning, Neutron time of flight, n\_TOF facility}, journal = {Nuclear instruments and methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment}, doi = {10.1016/j.nima.2022.166686}, volume = {1033}, issn = {0168-9002}, title = {Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions}, keyword = {Silicon telescope, Particle recognition, Machine learning, Neutron time of flight, n\_TOF facility}, chapternumber = {166686} }
@article{article, author = {\v{Z}ugec, Petar and Bosnar, Damir and Chiaveri, E.}, year = {2022}, pages = {9}, DOI = {10.1016/j.nima.2022.166686}, chapter = {166686}, keywords = {Silicon telescope, Particle recognition, Machine learning, Neutron time of flight, n\_TOF facility}, journal = {Nuclear instruments and methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment}, doi = {10.1016/j.nima.2022.166686}, volume = {1033}, issn = {0168-9002}, title = {Machine learning based event classification for the energy-differential measurement of the natC(n,p) and natC(n,d) reactions}, keyword = {Silicon telescope, Particle recognition, Machine learning, Neutron time of flight, n\_TOF facility}, chapternumber = {166686} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font