Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1189546

Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms


Tišljarić, Leo; Ribić, Filip; Majstorović, Željko; Carić, Tonči
Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms // The Science and Development of Transport—ZIRP 2021 / Petrović, Marijana ; Novačko, Luka ; Božić, Dijana ; Rožić, Tomislav (ur.).
Cham: Springer, 2022. str. 61-74 doi:10.1007/978-3-030-97528-9_5


CROSBI ID: 1189546 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms

Autori
Tišljarić, Leo ; Ribić, Filip ; Majstorović, Željko ; Carić, Tonči

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
The Science and Development of Transport—ZIRP 2021

Urednik/ci
Petrović, Marijana ; Novačko, Luka ; Božić, Dijana ; Rožić, Tomislav

Izdavač
Springer

Grad
Cham

Godina
2022

Raspon stranica
61-74

ISBN
978-3-030-97527-2

Ključne riječi
Speed transition matrix ; Machine learning ; Feature extraction ; Traffic state estimation

Sažetak
Book cover The Science and Development of Transport—ZIRP 2021 pp 61–74Cite as Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms Leo Tišljarić, Filip Ribić, Željko Majstorović & Tonči Carić Chapter First Online: 08 April 2022 Abstract Feature extraction is a crucial part of data preparation when using machine learning algorithms, especially for emerging datasets. The speed transition matrix (STM) emerged only recently as a traffic data modeling technique. In this paper, key features from STMs are extracted and proposed for the purpose of traffic state estimation. This step simplifies the learning process and the interpretability of the results obtained when estimating the traffic state using the STMs. Using the proposed features, traffic state is estimated for the most crucial road segments in the City of Zagreb, Croatia. The method is evaluated on some of the most used machine learning algorithms, with the highest accuracy value obtained with decision tree and random forest algorithms.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Leo Tišljarić (autor)

Avatar Url Tonči Carić (autor)

Avatar Url Željko Majstorović (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi link.springer.com www.researchgate.net

Poveznice na istraživačke podatke:

github.com

Citiraj ovu publikaciju:

Tišljarić, Leo; Ribić, Filip; Majstorović, Željko; Carić, Tonči
Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms // The Science and Development of Transport—ZIRP 2021 / Petrović, Marijana ; Novačko, Luka ; Božić, Dijana ; Rožić, Tomislav (ur.).
Cham: Springer, 2022. str. 61-74 doi:10.1007/978-3-030-97528-9_5
Tišljarić, L., Ribić, F., Majstorović, Ž. & Carić, T. (2022) Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms. U: Petrović, M., Novačko, L., Božić, D. & Rožić, T. (ur.) The Science and Development of Transport—ZIRP 2021. Cham, Springer, str. 61-74 doi:10.1007/978-3-030-97528-9_5.
@inbook{inbook, author = {Ti\v{s}ljari\'{c}, Leo and Ribi\'{c}, Filip and Majstorovi\'{c}, \v{Z}eljko and Cari\'{c}, Ton\v{c}i}, year = {2022}, pages = {61-74}, DOI = {10.1007/978-3-030-97528-9\_5}, keywords = {Speed transition matrix, Machine learning, Feature extraction, Traffic state estimation}, doi = {10.1007/978-3-030-97528-9\_5}, isbn = {978-3-030-97527-2}, title = {Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms}, keyword = {Speed transition matrix, Machine learning, Feature extraction, Traffic state estimation}, publisher = {Springer}, publisherplace = {Cham} }
@inbook{inbook, author = {Ti\v{s}ljari\'{c}, Leo and Ribi\'{c}, Filip and Majstorovi\'{c}, \v{Z}eljko and Cari\'{c}, Ton\v{c}i}, year = {2022}, pages = {61-74}, DOI = {10.1007/978-3-030-97528-9\_5}, keywords = {Speed transition matrix, Machine learning, Feature extraction, Traffic state estimation}, doi = {10.1007/978-3-030-97528-9\_5}, isbn = {978-3-030-97527-2}, title = {Speed Transition Matrix Feature Extraction for Traffic State Estimation Using Machine Learning Algorithms}, keyword = {Speed transition matrix, Machine learning, Feature extraction, Traffic state estimation}, publisher = {Springer}, publisherplace = {Cham} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font