Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1189403

Deep learning-based anomaly detection from ultrasonic images


Posilović, Luka; Medak, Duje; Milković, Fran; Subašić, Marko; Budimir, Marko; Lončarić, Sven
Deep learning-based anomaly detection from ultrasonic images // Ultrasonics, 124 (2022), 106737, 9 doi:10.1016/j.ultras.2022.106737 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1189403 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep learning-based anomaly detection from ultrasonic images

Autori
Posilović, Luka ; Medak, Duje ; Milković, Fran ; Subašić, Marko ; Budimir, Marko ; Lončarić, Sven

Izvornik
Ultrasonics (0041-624X) 124 (2022); 106737, 9

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Non-destructive testing ; Ultrasonic testing ; Anomaly detection ; Generative Adversarial Network ; Deep learning

Sažetak
Non-destructive testing is a group of methods for evaluating the integrity of components. Among them, ultrasonic inspection stands out due to its ability to visualize both shallow and deep sections of the material in the search for flaws. Testing of the critical components can be a tiring and time-consuming task. Therefore, human experts in analyzing inspection data could use a hand in discarding anomaly-free data and reviewing only suspicious data. Using such a tool, errors would be less common, inspection times would shorten and non-destructive testing would be more efficient. In this work, we evaluate multiple state-of-the- art deep-learning anomaly detection methods on the ultrasonic non-destructive testing dataset. We achieved an average performance of almost 82% of ROC AUC. We discuss in detail the advantages and disadvantages of the presented methods.

Izvorni jezik
Engleski



POVEZANOST RADA


Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Poveznice na istraživačke podatke:

doi.org

Citiraj ovu publikaciju:

Posilović, Luka; Medak, Duje; Milković, Fran; Subašić, Marko; Budimir, Marko; Lončarić, Sven
Deep learning-based anomaly detection from ultrasonic images // Ultrasonics, 124 (2022), 106737, 9 doi:10.1016/j.ultras.2022.106737 (međunarodna recenzija, članak, znanstveni)
Posilović, L., Medak, D., Milković, F., Subašić, M., Budimir, M. & Lončarić, S. (2022) Deep learning-based anomaly detection from ultrasonic images. Ultrasonics, 124, 106737, 9 doi:10.1016/j.ultras.2022.106737.
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Milkovi\'{c}, Fran and Suba\v{s}i\'{c}, Marko and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2022}, pages = {9}, DOI = {10.1016/j.ultras.2022.106737}, chapter = {106737}, keywords = {Non-destructive testing, Ultrasonic testing, Anomaly detection, Generative Adversarial Network, Deep learning}, journal = {Ultrasonics}, doi = {10.1016/j.ultras.2022.106737}, volume = {124}, issn = {0041-624X}, title = {Deep learning-based anomaly detection from ultrasonic images}, keyword = {Non-destructive testing, Ultrasonic testing, Anomaly detection, Generative Adversarial Network, Deep learning}, chapternumber = {106737} }
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Milkovi\'{c}, Fran and Suba\v{s}i\'{c}, Marko and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2022}, pages = {9}, DOI = {10.1016/j.ultras.2022.106737}, chapter = {106737}, keywords = {Non-destructive testing, Ultrasonic testing, Anomaly detection, Generative Adversarial Network, Deep learning}, journal = {Ultrasonics}, doi = {10.1016/j.ultras.2022.106737}, volume = {124}, issn = {0041-624X}, title = {Deep learning-based anomaly detection from ultrasonic images}, keyword = {Non-destructive testing, Ultrasonic testing, Anomaly detection, Generative Adversarial Network, Deep learning}, chapternumber = {106737} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font