Pregled bibliografske jedinice broj: 1189403
Deep learning-based anomaly detection from ultrasonic images
Deep learning-based anomaly detection from ultrasonic images // Ultrasonics, 124 (2022), 106737, 9 doi:10.1016/j.ultras.2022.106737 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1189403 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep learning-based anomaly detection from
ultrasonic images
Autori
Posilović, Luka ; Medak, Duje ; Milković, Fran ; Subašić, Marko ; Budimir, Marko ; Lončarić, Sven
Izvornik
Ultrasonics (0041-624X) 124
(2022);
106737, 9
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Non-destructive testing ; Ultrasonic testing ; Anomaly detection ; Generative Adversarial Network ; Deep learning
Sažetak
Non-destructive testing is a group of methods for evaluating the integrity of components. Among them, ultrasonic inspection stands out due to its ability to visualize both shallow and deep sections of the material in the search for flaws. Testing of the critical components can be a tiring and time-consuming task. Therefore, human experts in analyzing inspection data could use a hand in discarding anomaly-free data and reviewing only suspicious data. Using such a tool, errors would be less common, inspection times would shorten and non-destructive testing would be more efficient. In this work, we evaluate multiple state-of-the- art deep-learning anomaly detection methods on the ultrasonic non-destructive testing dataset. We achieved an average performance of almost 82% of ROC AUC. We discuss in detail the advantages and disadvantages of the presented methods.
Izvorni jezik
Engleski
POVEZANOST RADA
Profili:
Marko Subašić
(autor)
Sven Lončarić
(autor)
Marko Budimir
(autor)
Fran Milković
(autor)
Duje Medak
(autor)
Luka Posilović
(autor)
Poveznice na cjeloviti tekst rada:
doi www.sciencedirect.comPoveznice na istraživačke podatke:
doi.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE