Pregled bibliografske jedinice broj: 1188650
Motorway Bottleneck Probability Estimation in Connected Vehicles Environment Using Speed Transition Matrices
Motorway Bottleneck Probability Estimation in Connected Vehicles Environment Using Speed Transition Matrices // Sensors, 22 (2022), 7; 2807, 20 doi:10.3390/s22072807 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1188650 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Motorway Bottleneck Probability Estimation in Connected Vehicles Environment Using Speed Transition Matrices
Autori
Tišljarić, Leo ; Vrbanić, Filip ; Ivanjko, Edouard ; Carić, Tonči
Izvornik
Sensors (1424-8220) 22
(2022), 7;
2807, 20
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
motorway bottleneck ; connected vehicles ; bottleneck detection ; bottleneck probability ; speed transition matrix ; fuzzy-based bottleneck probability ; traffic simulation
Sažetak
Increased development of the urban areas leads to intensive transport service demand, especially on urban motorways. To increase traffic flow and reduce congestion, motorway traffic bottlenecks caused by high traffic demand need to be efficiently resolved using Intelligent Transport Systems services. Communication technology development that supports Connected Vehicles (CVs), which act as an active mobile sensor for collecting traffic data, provides an opportunity to harness the large datasets to develop novel methods regarding traffic bottlenecks detection. This paper presents a speed transition matrix based model for bottleneck probability estimation on motorways. The method is based on the computation of the speed at the vehicle transition point between consecutive motorway segments, which forms a traffic pattern that is represented using transition matrices. The main feature extracted from the traffic patterns was the center of mass, whose position is used as an input to the fuzzy-based system for bottleneck probability estimation. The proposed method is evaluated on four different simulated motorway traffic scenarios: (i) traffic collision site, (ii) short recurring bottleneck, (iii) long recurring bottleneck, and (iv) moving bottleneck. The method achieves comparable bottleneck detection results on every scenario, with a total accuracy of 92% on the validation dataset. The results indicate possible implementation of the method in the motorway traffic environment with a high CVs penetration rate using them as the sensory input data for the control systems based on the machine learning algorithms.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
HRZZ-IP-2020-02-5042 - Razvoj sustava zasnovanih na učećim agentima za unaprijeđenje upravljanja prometom u gradovima (DLASIUT) (Ivanjko, Edouard, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.mdpi.com www.researchgate.netPoveznice na istraživačke podatke:
github.comCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE