Pregled bibliografske jedinice broj: 1187729
Enhancing Scan Matching Algorithms via Genetic Programming for Supporting Big Moving Objects Tracking and Analysis in Emerging Environments
Enhancing Scan Matching Algorithms via Genetic Programming for Supporting Big Moving Objects Tracking and Analysis in Emerging Environments // Database and Expert Systems Applications. DEXA 2021. Lecture Notes in Computer Science(), vol 12923. Springer, Cham / Strauss, Christine ; Kotsis, Gabriele ; Tjoa, A Min ; Khalil, Ismail (ur.).
Cham: Springer, 2021. str. 348-360 doi:10.1007/978-3-030-86472-9_32
CROSBI ID: 1187729 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Enhancing Scan Matching Algorithms via Genetic
Programming for Supporting Big Moving Objects
Tracking and Analysis in Emerging Environments
Autori
Cuzzocrea, Alfredo ; Lenac, Kristijan ; Mumolo, Enzo
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Database and Expert Systems Applications. DEXA 2021. Lecture Notes in Computer Science(), vol 12923. Springer, Cham
Urednik/ci
Strauss, Christine ; Kotsis, Gabriele ; Tjoa, A Min ; Khalil, Ismail
Izdavač
Springer
Grad
Cham
Godina
2021
Raspon stranica
348-360
ISSN
0302-9743
Ključne riječi
Moving objects ; Scan-matching algorithms ; Intelligent systems ; Genetic optimization
Sažetak
Big moving objects arise as a novel class of big data objects in emerging environments. Here, the main problems are the following: (i) tracking, which represents the baseline operation for a plethora of higher-level functionalities, such as detection, classification, and so forth ; (ii) analysis, which meaningfully marries with big data analytics scenarios. In line with these goals, in this paper we propose a novel family of scan matching algorithms based on registration, which are enhanced by using a genetic pre-alignment phase based on a novel metrics, fist, and, second, performing a finer alignment using a deterministic approach. Our experimental assessment and analysis confirms the benefits deriving from the proposed novel family of such algorithms.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-295 - Ugradbeni sustavi za 3D percepciju (Lenac, Kristijan, NadSve ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Kristijan Lenac
(autor)