Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1185648

The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data


Njirjak, Marko; Otović, Erik; Jozinović, Dario; Lerga, Jonatan; Mauša, Goran; Michelini, Alberto; Štajduhar, Ivan
The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data // Mathematics, 10 (2022), 6; 965, 17 doi:10.3390/math10060965 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1185648 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data

Autori
Njirjak, Marko ; Otović, Erik ; Jozinović, Dario ; Lerga, Jonatan ; Mauša, Goran ; Michelini, Alberto ; Štajduhar, Ivan

Izvornik
Mathematics (2227-7390) 10 (2022), 6; 965, 17

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Earthquake detection ; Convolutional neural network ; Non-stationary signal analysis ; Classification ; Time–frequency representation

Sažetak
Non-stationary signals are often analyzed using raw waveform data or spectrograms of those data ; however, the possibility of alternative time–frequency representations being more informative than the original data or spectrograms is yet to be investigated. This paper tested whether alternative time–frequency representations could be more informative for machine learning classification of seismological data. The mentioned hypothesis was evaluated by training three well-established convolutional neural networks using nine time–frequency representations. The results were compared to the base model, which was trained on the raw waveform data. The signals that were used in the experiment are three-component seismogram instances from the Local Earthquakes and Noise DataBase (LEN-DB). The results demonstrate that Pseudo Wigner–Ville and Wigner–Ville time–frequency representations yield significantly better results than the base model, while spectrogram and Margenau–Hill perform significantly worse (p < 0.01). Interestingly, the spectrogram, which is often used in signal analysis, had inferior performance when compared to the base model. The findings presented in this research could have notable impacts in the fields of geophysics and seismology as the phenomena that were previously hidden in the seismic noise are now more easily identified. Furthermore, the results indicate that applying Pseudo Wigner–Ville or Wigner–Ville time–frequency representations could result in a large increase in earthquakes in the catalogs and lessen the need to add new stations with an overall reduction in the costs. Finally, the proposed approach of extracting valuable information through time–frequency representations could be applied in other domains as well, such as electroencephalogram and electrocardiogram signal analysis, speech recognition, gravitational waves investigation, and so on.

Izvorni jezik
Engleski

Znanstvena područja
Geofizika, Interdisciplinarne prirodne znanosti, Računarstvo



POVEZANOST RADA


Projekti:
EK--951732 - Nacionalni centri kompetencija u okviru EuroHPC (EUROCC) (Štula, Maja; Kranjčević, Lado; Kovač, Mario; Skala, Karolj; Miletić, Vedran, EK ) ( CroRIS)
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)
MINGO-ESIF-KK.01.2.1.02.0179 - ABsistemDCiCloud (ABsistemDCiCloud) (Lerga, Jonatan, MINGO - Fond: Europski fond za regionalni razvoj Program: OP Konkurentnost i kohezija 2014. - 2020. Jačanje gospodarstva primjenom istraživanja i inovacija Područje: IRI - Povećanje razvoja novih proizvoda i usluga koji proizlaze iz aktivnosti istraživanja i raz) ( CroRIS)
COST-CA17137 - Mreža za gravitacijske valove, geofiziku i strojno učenje (G2NET) (COST ) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Avatar Url Goran Mauša (autor)

Avatar Url Marko Njirjak (autor)

Avatar Url Erik Otović (autor)

Avatar Url Jonatan Lerga (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Njirjak, Marko; Otović, Erik; Jozinović, Dario; Lerga, Jonatan; Mauša, Goran; Michelini, Alberto; Štajduhar, Ivan
The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data // Mathematics, 10 (2022), 6; 965, 17 doi:10.3390/math10060965 (međunarodna recenzija, članak, znanstveni)
Njirjak, M., Otović, E., Jozinović, D., Lerga, J., Mauša, G., Michelini, A. & Štajduhar, I. (2022) The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data. Mathematics, 10 (6), 965, 17 doi:10.3390/math10060965.
@article{article, author = {Njirjak, Marko and Otovi\'{c}, Erik and Jozinovi\'{c}, Dario and Lerga, Jonatan and Mau\v{s}a, Goran and Michelini, Alberto and \v{S}tajduhar, Ivan}, year = {2022}, pages = {17}, DOI = {10.3390/math10060965}, chapter = {965}, keywords = {Earthquake detection, Convolutional neural network, Non-stationary signal analysis, Classification, Time–frequency representation}, journal = {Mathematics}, doi = {10.3390/math10060965}, volume = {10}, number = {6}, issn = {2227-7390}, title = {The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data}, keyword = {Earthquake detection, Convolutional neural network, Non-stationary signal analysis, Classification, Time–frequency representation}, chapternumber = {965} }
@article{article, author = {Njirjak, Marko and Otovi\'{c}, Erik and Jozinovi\'{c}, Dario and Lerga, Jonatan and Mau\v{s}a, Goran and Michelini, Alberto and \v{S}tajduhar, Ivan}, year = {2022}, pages = {17}, DOI = {10.3390/math10060965}, chapter = {965}, keywords = {Earthquake detection, Convolutional neural network, Non-stationary signal analysis, Classification, Time–frequency representation}, journal = {Mathematics}, doi = {10.3390/math10060965}, volume = {10}, number = {6}, issn = {2227-7390}, title = {The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data}, keyword = {Earthquake detection, Convolutional neural network, Non-stationary signal analysis, Classification, Time–frequency representation}, chapternumber = {965} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font