Pregled bibliografske jedinice broj: 1185619
Gender Estimation from Panoramic Dental X-ray Images using Deep Convolutional Networks
Gender Estimation from Panoramic Dental X-ray Images using Deep Convolutional Networks // 18th IEEE International Conference on Smart Technologies (EUROCON 2019)
Novi Sad, Srbija, 2019. str. 1-5 doi:10.1109/EUROCON.2019.8861726 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1185619 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Gender Estimation from Panoramic Dental X-ray Images
using Deep Convolutional Networks
Autori
Ilić, Ivan ; Vodanović, Marin ; Subašić, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
18th IEEE International Conference on Smart Technologies (EUROCON 2019)
Mjesto i datum
Novi Sad, Srbija, 01.07.2019. - 04.07.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
deep convolutional networks ; image classification ; gender estimation ; partial identification ; forensic dentistry
Sažetak
Current techniques for gender estimation from Xray images, except being time-consuming, require a highly experienced expert to perform the process. Deep convolutional neural networks have shown to be a very successful technique in many computer vision tasks, mainly because of high accuracy, stability, and processing speed. In this paper, we propose a new method to the gender estimation from panoramic dental X-ray images based on analysis of images using deep convolutional neural networks trained to perform a binary classification. Detailed insight is provided into architecture, hyperparameters and training procedure of our best performing model obtaining an accuracy of 94.3% on a test set. Further experiments have been performed to get a better understanding of anatomical structures which carry the most important information for gender estimation. The presented method requires no special knowledge or equipment to be used, and besides high accuracy, it is also extremely fast with only 18ms of processing time per image on a dedicated GPU.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Dentalna medicina
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Stomatološki fakultet, Zagreb,
Klinički bolnički centar Zagreb