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A B S T R A C T   

Hailstorms, although extremely damaging severe weather hazards, remain a very challenging phenomenon to 
predict. To better understand dynamic processes and model performance, which can be helpful in forecasting 
hailstorms, three selected hailstorms in Croatia are simulated with the WRF model at convection-permitting (1 
km) grid spacing using the HAILCAST module. In addition, the performance of the Lightning Potential Index 
(LPI) algorithm in representing the observed lightning activity during the selected hailstorms is analyzed. A 
multiphysics ensemble of 12 sensitivity simulations with the combinations of four different microphysics and 
three different planetary boundary layer parameterization (PBL) schemes is adopted to assess the forecasting 
ability of HAILCAST and LPI and their sensitivity to the choice of microphysics and PBL parameterization 
schemes. First, the model’s ability to reproduce surface measurements of 2-m temperature, 2-m relative hu
midity, 2-m equivalent potential temperature and 10-m wind are examined using root mean square error (RMSE) 
decomposition. Then, the LPI is assessed against lightning observations via the object-based Structure-Ampli
tude-Location (SAL) method. Finally, an upscaled neighborhood verification method is proposed to assess 
HAILCAST against hail observations from the Croatian hailpad network. The results show that the observed hail 
and lightning activity is represented well by the model. There is a greater sensitivity to the choice of micro
physics scheme than the PBL scheme, with National Severe Storms Laboratory double-moment scheme (NSSL2) 
microphysics scheme differing the most among the entire sensitivity ensemble. Nonetheless, both HAILCAST and 
LPI show promising performance in simulating observed hail and lightning activity, although HAILCAST tends to 
overestimate the area affected by hail. Nonetheless, the discrepancies between model configurations highlight 
the importance of simulating convection correctly to obtain a meaningful forecast of hail and lightning.   

1. Introduction 

Progress in predicting the occurrence and intensity of hailstorms is of 
great importance in limiting the harmful consequences of this severe 
weather hazard. Every year, hailstorms cause considerable damage to 
buildings, agriculture, and vehicles, resulting in substantial economic 
and insured losses. The crop and property damage even from individual 
hailstorms can exceed $1 billion U.S. dollars (Brown et al., 2015; 
Changnon, 2009; Kunz et al., 2018; Púcik et al., 2019; Schuster et al., 
2005). Although the importance of successful hail forecasting cannot be 

stressed enough, both for damage mitigation and investigation of hail 
properties in a changing climate, hail remains a difficult phenomenon to 
model. This is due to existing gaps in understanding the microphysical 
and dynamic processes involved in hail formation, which stem from 
limited direct observations of hail and difficulties associated with 
running models at sufficiently high resolutions to provide valuable hail 
information (Raupach et al., 2021). 

Most hail-forecasting methods are currently based on the time 
extrapolation of hailstorm characteristics observed by remote sensing 
methods, mostly radar and lightning data (Farnell et al., 2018, 2017; 
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Nisi et al., 2014). In recent years, machine learning methods for hail 
forecasting have been developed (Czernecki et al., 2019; Gagne et al., 
2017; Manzato, 2013; Marzban and Witt, 2001). However, machine 
learning methods trained on observational data can generally make 
useful predictions only up to a few hours ahead. Although predictions 
for one or more days in advance are possible (but rare), such machine 
learning models require large datasets of observations, and historical 
numerical weather prediction (NWP) model runs for training purposes 
(Gagne et al., 2017). 

On the other hand, over the years, hail-forecasting methods based on 
a combination of approximations of the convective environment 
responsible for hailstorm formation and local hail climatology (Johns 
and Doswell, 1992) have been developed. Most existing hail-forecasting 
models use the estimation of updraft strength based on sounding ob
servations to provide forecasts on hailstone size (Brimelow et al., 2002; 
Fawbush and Miller, 1953; Moore and Pino, 1990). This approach has 
practical limitations since sounding observations are mostly available 
only twice a day at discrete locations. 

As computational power has advanced over the years, it has become 
possible to replace sounding observations with spatially continuous (i.e., 
modelled) vertical profiles. A physically based one-dimensional hail 
model called HAILCAST is one of the sounding-based models (Brimelow 
et al., 2002; Jewell and Brimelow, 2009). It showed a greater skill in 
providing a more reliable hail size forecast compared with the other 
sounding methods (Jewell and Brimelow, 2009). Recently, Adams-Selin 
and Ziegler (2016) coupled a physically improved version of HAILCAST 
with the Weather Research and Forecasting (WRF) model. Based on 
simulated cloud liquid and ice water, vertical velocity, temperature, 
water vapor and pressure fields, WRF-HAILCAST provides the forecast of 
maximum hailstone diameter at the ground. Adams-Selin and Ziegler 
(2016) found that WRF-HAILCAST can forecast hail sizes within 12 mm 
of the observed sizes in 66% of cases. Moreover, WRF-HAILCAST was 
tested and improved during the 2014–2016 NOAA Hazardous Weather 
Testbed Spring Forecasting Experiments (Jirak et al., 2014). As a result 
of testing and improvements, HAILCAST matched the results relatively 
consistently with the best performing storm surrogate products, such as 
updraft helicity and column-integrated graupel. Moreover, unlike 
analyzed storm-surrogate fields, HAILCAST produced consistent results 
even when used across different model configurations and horizontal 
grid spacings (Adams-Selin et al., 2019). Recently, Trefalt et al. (2018) 
tested WRF-HAILCAST for one particular thunderstorm case (6 June 
2015) over the Alpine region and obtained a reasonable match of the 
model output with observed hail (based on radar products and reported 
damage). Further, Manzato et al. (2020) successfully simulated a severe 
hailstorm occurring over the northeastern Italy and compared the results 
with hailpad measurements. Authors found that WRF-HAILCAST was 
able to reproduce the severity of the hailstorm and the location of the 
areas affected with the largest hailstones. However, a strong variability 
of the results depending on large-scale forcing and initialization time is 
reported. On the other hand, the variability of results when considering 
different microphysics parameterization schemes is found to be smaller. 

Another storm-related phenomenon, i.e., lightning, is one of the in
dicators of severe weather and extremely damaging phenomena. 
Explicit modelling of electric fields in the atmosphere, as well as light
ning discharges within an NWP model, is possible (Altaratz, 2005; 
Barthe et al., 2012; Barthe and Pinty, 2007; Fierro et al., 2013; Helsdon 
et al., 1992; MacGorman et al., 2001; Mansell, 2005; Mansell et al., 
2010; Pinty and Barthe, 2008; Tsenova and Mitzeva, 2009), but still, it is 
rather highly time- and resource-consuming. Therefore, indirect 
methods are often applied. These methods are based on the relationship 
between lightning flashes and various nonelectrical parameters/vari
ables that characterize convective activity, such as convective available 
potential energy (CAPE) and precipitation rate (Romps et al., 2014), 
convective cloud top heights, convective precipitation and upward 
convective mass flux (Allen and Pickering, 2002) and upward cloud ice 
flux at 440 hPa (Finney et al., 2014). Recently (Lopez, 2016; Lopez, 

2018) developed a new lightning parameterization for the global 
convection-parameterizing ECMWF IFS model. This parameterization 
considers CAPE and diagnosed vertical profiles of graupel and super
cooled liquid from convection parameterization. It is shown that there is 
a good agreement between results of this lightning parameterization in 
deterministic forecasts on temporal and spatial scales above 6 h and 50 
km. However, since this parametrization considers CAPE, it is chal
lenging to use the parametrization in convection permitting models due 
to CAPE-removal by explicit convection. 

Another approach is based on use of the lightning potential index 
(LPI) developed by Yair et al. (2010), which represents a measure for 
charge generation and separation inside a thundercloud. The LPI (Jkg− 1) 
is defined as an updraft kinetic energy scaled by the potential for charge 
separation based on the ratios between ice and liquid water content in 
the main charging zone of a thundercloud. Several studies have 
confirmed that LPI is a suitable tool for implicit forecasting of lightning 
in WRF (Lagasio et al., 2017; Lynn and Yair, 2008; Yair et al., 2010) and 
COSMO (Sokol and Minářová, 2020) NWP models. 

Within this context, this study aims to investigate the predictive 
ability of the convection-permitting WRF model to reproduce atmo
spheric conditions and WRF-HAILCAST and LPI to reproduce hail and 
lightning tracks observed during three hail events in Croatia. Testing of 
the hail and LPI forecasts contributes to the improvement of timely 
forecasts and warning systems both for the public and specific users (e. 
g., the energy sector) and can further lower economic losses. An 
ensemble of twelve WRF simulations is formed, with a model setup 
varying among three planetary boundary layer (PBL) and four micro
physics schemes. The results of the ensemble of sensitivity simulations 
are evaluated against the measured lightning flashes (Betz et al., 2009; 
Franc et al., 2016; Jelić et al., 2021; Jurković et al., 2015; Počakal et al., 
2018) and direct hail measurements from the Croatian hailpad networks 
(e.g., Jelić et al., 2020; Počakal et al., 2009). 

The paper is organized as follows. In Section 2, a brief description of 
selected hail events and observational data used to evaluate WRF- 
HAILCAST and LPI predictive ability is presented. Section 3 describes 
the modelling setup, WRF sensitivity experiments and proposed verifi
cation approach. The results are presented and discussed in Section 4. 
Some concluding remarks are given in Section 5. 

2. Observational data and hail events 

2.1. Hail events 

For the simulations, three hail events over Croatia are selected based 
on their severity and data availability. The first chosen case occurred on 
25 June 2017, representing one of the most intense hailstorms in our 
database. On that day, central Europe was under the influence of an 
upper-level trough. As the upper-level trough passed eastward, a 
shallow cyclone developed in the northern Adriatic. Several mesoscale 
convective systems formed over Croatia during this event, resulting in 
widespread hail occurrence across the Croatian territory. On that day, 
72 hailpads recorded hail, with a maximum measured hailstone diam
eter of 31.4 mm. The hail event was accompanied by southwesterly (SW) 
large-scale flow, which is the most common upper-level flow type 
associated with hail/lightning occurrences in Croatia (Jelić et al., 2020; 
Mikuš et al., 2012). Moreover, during this event, the maximum total 
daily precipitation of 34.9 mm with the maximum precipitation rate of 
1.82 mm/min was recorded at the Zagreb Maksimir station. 

The second case occurred on 24 July 2017, when central Europe was 
under the influence of a cyclone resulting in SW flow over Croatia. As the 
cyclone moved to the south, a cold front passed over Croatia, resulting in 
the formation of hailstorms. Nine hailpads measured hail, and the 
maximum measured hailstone diameter was 54.2 mm. Moreover, during 
this event, a maximum total daily precipitation of 34.8 mm is recorded 
at Križevci station with the maximum precipitation rate of 1.43 mm/ 
min. 
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A similar situation developed during the third case on 16 September 
2017. An intense upper-level trough developed over the European area 
with the center in southern Europe. While the upper-level trough passed 
the Alps, a shallow cyclone developed over Genoa. This cyclone moved 
eastward across the Italian Peninsula and along the Adriatic coast. This 
hail event was accompanied by upper-level SW flow as well. Hail was 
reported in the evening and night time hours, from 17:00 to 00:00 UTC, 
across central Croatia. During the event, 22 hailpads were impacted, and 
the maximum measured hailstone diameter was 23.1 mm while the 
maximum recorded daily precipitation was 77.7 mm at Puntijarka sta
tion with 11.45 mm/min maximum precipitation rate. 

2.2. Observational data 

The first step in this analysis was to estimate the model’s ability to 
reproduce general surface conditions on the selected hail days using 
standard meteorological measurements from automatic stations main
tained by the Croatian Meteorological and Hydrological Service 
(DHMZ). We used hourly values of temperature, relative humidity and 
hourly maximum wind speed from the stations across Croatia (Fig. 1). 
Moreover, considering the importance of equivalent potential temper
ature (θe) to pseudo-adiabatic lifting processes and storm formation, 
simulated and observed surface values of θe are also evaluated. 

To assess the ability of LPI to reproduce general lightning patterns 
during the selected hail events, we used lightning data from the Light
ning Detection Network (LINET) (Betz et al., 2009). The LINET network 
detects both cloud-to-ground (CG) and intracloud (IC) lightning flashes 
and differentiates between positive and negative discharges. With 90 
sensors in 17 countries that are up to 250 km away, the LINET network 
successfully detects weaker stroke signals with a current amplitude 
lower than 10 kA. From 2009, the median values of detected current 
amplitude values had decreased by half (Franc et al., 2016), showing 
significant improvement in the sensitivity detection towards smaller 
stroke current amplitudes. For most of the European region (Franc et al., 
2016; Jelić et al., 2021), the average minimum detectable signal is 0.7 
kA, and the median location accuracy error is ±84 m. Here, we 
considered total lightning information, i.e., we did not differentiate 
between types or polarities of lightning flashes. The total lightning for 
the examined cases was taken from the 2D database of lightning flashes 
at a 3 km × 3 km horizontal resolution and 2 min intervals (developed 

by Jelić et al., 2021). Higher spatial and temporal resolution is possible, 
but it exceeds our computational and storage capacities. 

The third observational dataset included hailpad measurements from 
(i) hail suppression stations in the continental region of Croatia, (ii) a 
specially designed hailpad polygon in northwestern Croatia, and (iii) 
hailpad stations in the northeastern (NE) Adriatic region. Overall, 590 
hailpads on hail suppression stations and 150 hailpads on the polygon 
with average spacing between hailpads of ~5.5 km and ~ 2 km, 
respectively, have been installed and maintained by the Croatian 
Meteorological and Hydrological Service (Počakal, 2011; Počakal et al., 
2009). Moreover, 65 hailpads were installed in Istria (NE Adriatic) in the 
vicinity of the vineyards during the VITCLIC project (https://www.pmf. 
unizg.hr/geof/en/research/climatology/vitclic). It is important to note 
that the Istrian region is not a part of the hail suppression network; 
therefore, hail observations from these hailpads are not under the po
tential influence of hail suppression activities. Positions of hailpads are 
indicated in Fig. 1. 

3. Modelling setup and verification approach 

3.1. WRF sensitivity experiments 

Selected hail events were simulated using an Advanced Research 
Weather Research and Forecasting (WRF, version 3.8.1) model (Ska
marock et al., 2008a) alongside HAILCAST and LPI. The model setup 
consisted of three one-way nested domains with horizontal grid reso
lutions of 9 km (204 × 180 grid points), 3 km (328 × 232 grid points) 
and 1 km (535 × 334 grid points) (Fig. 2). Taking into account the 
complexity of the terrain, the position of domains represent a compro
mise among several factors: (i) a coverage of the basic driving forces that 
affect the appearance of convective activity, (ii) the inflow/outflow 
wind relationship (here dominant SW synoptic inflow), (iii) important 
topographic features, (iv) area of interest (i.e., northern-eastern Adriatic 
and hinterland of Croatia) and (v) sufficiently distanced smaller domain 
from the relaxation zone in the larger domain. Similar domain setup has 
already been studied and tested in previous studies focusing on con
vection, in Horvath et al. (2019), Kehler-Poljak et al. (2017), Orlić et al. 
(2010), Renko et al. (2018) and Šepić et al. (2009). Considering the 
importance of fine grid spacing in the vertical direction (e.g., Fiori et al., 
2014) and the sensitivity of sounding derived indices to vertical 

Fig. 1. Positions of automatic weather stations across Croatia used in this analysis (red dots) and hailpads from: (i) hail suppression stations (black squares), (ii) 
specially designed polygon in the northwestern Croatia (green square), and (iii) stations in Istria (the northeastern Adriatic) not connected to hail suppression 
activities (blue squares). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sampling (e.g. Manzato, 2008), the model setup consisted of 97 vertical 
levels with 61 levels in the first 10 km above the surface. The model time 
step is set to 40 s, 13.33 s and 4.44 s, respectively. 

Grid resolutions of 3 and 1 km allowed the model to represent many 
convective processes explicitly (Kain et al., 2008, 2006), and therefore, 
on smaller domains, no cumulus parameterization was applied. In the 
outermost domain, convection was parameterized using the Kain-Fritsch 
scheme (Kain and Kain, 2004). Other physics options used included the 
rapid radiative transfer model scheme (RRTM) (Mlawer et al., 1997) for 
longwave radiation and the Dudhia scheme (Dudhia, 1989) for short
wave radiation. Regarding the PBL parameterization and microphysics 
(MP) parameterization schemes, we used a multiphysics ensemble 
approach with combinations of three different PBL and four different MP 
parameterization schemes. 

The chosen MP schemes were the Pardue Lin (Chen and Sun, 2002; 
Lin et al., 1983) scheme (LIN), WRF single-moment six-class scheme 
(WSM6) (Hong and Lim, 2006), Morrison double-moment scheme 
(MORR) (Morrison et al., 2009) and National Severe Storms Laboratory 
double-moment scheme (NSSL2) (Mansell et al., 2010). They ranged 
from single-moment (NSSL2 and WSM6) to double-moment ones (LIN 
and MORR) with the aim of reducing the uncertainty in predicting key 
microphysical processes responsible for hail and lightning formation. 
Moreover, we used three different PBL schemes: Yonsei University PBL 
(YSU) (Hong et al., 2006), MYNN2.5 (MYNN) (Nakanishi and Niino, 
2006) and the Bougeault-Lacarrère scheme (BouLac) (Bougeault and 
Lacarrere, 1989). 

The initial and boundary conditions were obtained from the Euro
pean Center for Medium-Range Weather Forecasts (ECMWF) model 
analysis (Manzato et al., 2020) with a spatial resolution of 0.125◦ x 
0.125◦. All simulations were initialized at 12 UTC the day before the hail 
event, providing a necessary spin-up time of 12 h (Skamarock et al., 
2008b), while the boundary conditions were updated every 6 h. 

3.2. WRF - HAILCAST algorithm 

WRF-HAILCAST is a time-dependent hail growth model that is 

integrated into the advanced research version of the WRF (WRF-ARW) 
model. The original HAILCAST was developed by Poolman (1992) and 
improved by Brimelow et al. (2002), and it consisted of a steady-state 
cloud model coupled with a time-dependent hail growth model. 

WRF model, when run at a horizontal grid scale of 4 km and smaller, 
can successfully reproduce the dominant, larger-scale circulations, as 
well as associated hydrometeor fields (Kain et al., 2006; Weisman et al., 
1997). Moreover, WRF can simulate more physically valuable infor
mation regarding the intracloud environment than a one-dimensional 
steady-state cloud model. Therefore, it is useful to couple HAILCAST 
with WRF as described in Adams-Selin and Ziegler (2016). The new 
physically improved version of HAILCAST developed by Adams-Selin 
and Ziegler (2016) is therefore coupled with WRF and it uses the vertical 
updraft, liquid and ice water content and temperature profiles from a 
given WRF time step and grid column, to forecast the maximum ex
pected hailstone diameter at the ground. If any grid column has a ver
tical velocity that exceeds 10 ms− 1 and such vertical velocities last at 
least 15 min, the profiles of vertical velocity, temperature, cloud water, 
cloud ice, and snow-mixing ratio from that grid column are forwarded to 
WRF-HAILCAST. Then, two embryos of sizes 5 and 7.5 mm are inserted 
at the level of − 8 ◦C, and three embryos of sizes 5, 7.5 and 10 mm are 
inserted at the level of − 13 ◦C. These embryos are tracked in a time- 
varying updraft until the maximum vertical velocity falls below 10 
ms− 1 or the updraft duration exceeds 2000 s. At that point, the hail
stones are assumed to have exited the cloud, and the information on the 
maximum hailstone diameter is passed back to WRF, which stores it and 
proceeds to its next time step. In our setup HAILCAST is activated only 
on the smallest domain with 1 km horizontal resolution and HAILCAST 
activates every model’s internal time step, that is every 4.44 s, while 
accumulated 15-min fields are stored. 

Here, hail forecast is obtained using the latest publicly available 
version of HAILCAST described in Adams-Selin et al. (2019). Initially, 
HAILCAST is activated if the vertical velocity anywhere in the grid ex
ceeds 10 ms− 1. However, the results presented in Adams-Selin et al. 
(2019) were obtained by simulations at horizontal resolutions of 4 and 3 
km. Since we are using 1 km grid spacing and recent studies (e.g., Bryan 

Fig. 2. Position of one-way nested domains at 9, 3, and 1 km grid resolution adopted for WRF simulations (rectangles). Shading indicates topography height as 
represented in 9 km domain. 
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and Morrison, 2012; Prein et al., 2021) have pointed out that vertical 
updrafts are highly resolution-dependent, here, a new threshold of 18 
ms− 1 for HAILCAST activation is examined and introduced. A new 
threshold is determined by inspecting model’s performance in terms of 
probability of detection and false alarm rate for four activation thresh
olds (10, 15, 18, 20 ms− 1). This choice is further discussed in Section 
4.3.1. 

3.3. LPI algorithm 

Lightning potential index (LPI) developed by Lynn and Yair (2008) 
and Yair et al. (2010) is formulated as a measure of the potential for 
charge generation and separation that leads to lightning flashes in a 
thunderstorm. LPI is defined as a volume integral of the total mass flux of 
ice and liquid water within the zone between the freezing level and 
− 20 ◦C isotherm, as this region is where the noninductive ice-graupel 
mechanism is the most effective due to the presence of supercooled 
liquid water and ice and graupel particles (Saunders, 2008). 

The LPI [J/ kg] is defined as: 

LPI =
1
V

∫∫∫

εw2dxdydz (1)  

where V [m− 3] is a model unit volume, dx, dy, and dz [m] are model grid 
increments, w [m/ s] vertical velocity and ε [kg kg− 1] a dimensionless 
number dependent on the mixing ratios of graupel, snow, cloud ice and 
liquid water that obtains values between 0 and 1. A maximum value of 1 
is obtained when the mixing ratios of combined ice species and super
cooled liquid water are equal, indicating that all species are required in 
the charge separation process. For more information about ε please refer 
to Lynn and Yair (2008) and Yair et al. (2010). 

In the formulation of the LPI algorithm used in this study, there are 
several requirements that must be met so that LPI for a particular grid 
point is nonzero: (i) vertical velocity in that particular grid point must be 
greater than 1.1 ms− 1, (ii) vertical velocity in adjacent grid points 
(within a five-grid radius) must be greater than 1.1 ms− 1, and finally (iii) 
that particular grid point and its adjacent grid points must be in an 
unstable environment. Unstable environment is defined by inspection of 
a parameter similar to mixed layer CAPE obtained with the integration 
over a 500 hPa layer starting at 50 hPa above ground. A detailed 
description of these requirements can be found in Brisson et al. (2021). 
Here, LPI is computed every 2 min and 2 min fields are stored. 

3.4. Verification approach 

Simulations of selected hail events are verified in three sequential 
phases: (i) estimation of the model’s ability to reproduce surface tem
perature, wind, relative humidity and equivalent potential temperature 
measurements from automatic meteorological stations in Croatia, (ii) 
assessment of the LPI against LINET lightning data using the Structure- 
Amplitude-Location (SAL) verification method (Wernli et al., 2008), and 
(iii) verification of HAILCAST results against hailpad observations using 
a proposed upscaled neighborhood verification method. 

First, hourly values of temperature, relative humidity, equivalent 
potential temperature and hourly maximums of wind speed from auto
matic meteorological stations (Fig. 1) were used to assess the model’s 
ability to simulate general surface conditions on the selected hail days. 
Simulated and measured values were compared for all stations consid
ered, and root mean square error (RMSE) decomposition (Murphy, 
1988; Takacs, 1985; Taylor, 2001) was performed. We used RMSE 
decomposition to isolate the influence of dispersion errors on the biases 
of the mean and standard deviation and consequently to isolate the in
fluence of space and time uncertainties between simulated and observed 
fields. The practical application of the method using convective- 
permitting numerical simulations with the WRF model is given in Hor
vath et al. (2012). Additionally, simulated surface values are compared 

against ECMWF Integrated Forecasting System (IFS) forecast. Here, 3- 
hourly values of 2 m temperature, 2 m relative humidity and 2 m 
equivalent potential temperature obtained by the ECMWF IFS forecast 
initialized at 12 UTC the day before hail event were used. 

Second, LPI is assessed against lightning observations using the SAL 
method (Wernli et al., 2008). Here, a formulation of SAL method from 
R’s SpatialVx package is used (https://rdrr.io/cran/SpatialVx/man/Spa 
tialVx-package.html). Although primarily designed to evaluate simu
lated precipitation fields, the object-based SAL method is used for the 
first time to assess the LPI algorithm’s ability to reproduce the main 
characteristics of observed lightning activity in simulated hail events. 
The SAL method consists of three independent components: amplitude 
(A), structure (S) and location (L). These components are obtained 
considering simulated and observed fields over the entire domain. 
Amplitude component A is the only component that does not require 
identification of objects and considers normalized difference between 
the simulated and observed domain-average numbers of lightning 
flashes. The values of A are between − 2 and 2, while 0 denotes a perfect 
forecast in amplitude. Positive values indicate that simulated fields 
overestimate the observed number of flashes and vice versa. Location, L, 
and structure, S, components require identification, but not matching, of 
objects in simulated and observed fields. Here, objects are identified 
after smoothing the field using convolution smoothing with a disk kernel 
of radius equal to 4 grid points as proposed by Davis et al. (2006). A 
threshold (inclusive) for defining objects is set to one flash while the 
minimal size of the object is set to 10 grid points. Location component, L, 
considers displacement of the simulated and observed field’s center of 
mass and weighted-average distance of the simulated and observed 
objects from the total field’s center of mass. This component can reach 
values between 0 and 2, and 0 indicates a perfect forecast. Lastly, 
structure component, S, provides information on whether the simulated 
objects are too small, too peaked or too large, and/or too flat. Similar to 
A, S values are also between − 2 and 2, while 0 denotes a perfect forecast. 

Finally, HAILCAST results are assessed against hailpad measure
ments. Unlike HAILCAST, hailpad network provides us with spatially 
limited information on hail occurrence since hailpads can record hail 
just at the point where they are installed. Potentially, hail could occur in 
the vicinity of a hailpad or anywhere between two hailpads and be left 
unrecorded. Unfortunately, Croatia is not yet fully covered with radars, 
and thus, spatially continuous information on hail occurrence derived 
from remote sensing fields, such as radars, was not available for this 
analysis. Moreover, interpolation of hail measurements from the Croa
tian hailpad network was not performed, as the optimal distance be
tween neighboring hailpads for well-diagnosed interpolated fields 
should be in the range of 3–3.5 km (Dalezios et al., 2002), and the 
average distance between the majority of hailpads in Croatia is ~5.5 km. 
Thus, when evaluating HAILCAST results against hailpad measure
ments, we had to evaluate spatially continuous fields against point ob
servations. We also had to consider that hail is a small-scale feature, and 
it is difficult for a high-resolution forecast to match precisely, in space, 
time, or intensity, observed small-scale features. However, even fore
casts that do not precisely match observations in space, time, or even 
intensity can still be useful. Consequently, in our verification approach, 
we define a useful forecast as the one where hail is simulated within an 
allowable displacement radius of 11 km from the point where it is 
observed. In this way, we do not require the forecast to exactly match 
the observations, and we still give credit to close forecasts. The choice of 
a verification window of 11 km is further explained in Section 4.3.2 and 
Supplement (Fig. S5, S6). 

To overcome challenges associated with the limited spatial infor
mation from point measurements and to limit the effect of double pen
alty that occurs when verifying slightly offset high-resolution forecasts 
of extremely rare events (Ebert, 2008), our proposed methodology to 
assess spatially continuous hail forecasts against point measurements of 
this extreme binary event considers an upscaled neighborhood verifi
cation method. Unlike the point-to-point verification method, 
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neighborhood verification methods do not require forecasts to precisely 
match observations at fine scales. Instead, neighborhood verification 
methods require that forecasts are in approximate agreement with ob
servations in space, time, intensity or other important aspects (Ebert, 
2008). The proposed verification methodology is composed of the ele
ments of already existing verification methods such as point to point, 
upscaling and a minimum coverage verification method (as described in 
Ebert (2008)). Although, elements of already existing methods are used, 
to authors knowledge, this is the first time that this specific formulation 
of discussed methods is employed. The proposed verification method is 
schematically illustrated in Fig. 3 and can be described as follows. 

Fig. 3a illustrates the starting point of a verification process – we 
have a spatially continuous hail forecast and nonevenly distributed 
impacted and unimpacted hailpads. The first step is to use point-to-point 
verification method to match point observations with the forecast from 
the closest model grid point (Fig. 3b). This leaves us with the contin
gency table indicated in Fig. 3c. Note that the contingency table is ob
tained by summarizing the number of hailpads that are considered hits 
(hailpad is impacted and hail is simulated at the closest model grid 
point), false alarms (hailpad is not impacted but hail is simulated), 
misses (hailpad is impacted but hail is not simulated) and correct neg
atives (hailpad is not impacted and hail is not simulated), while the grid 
points not covered with hailpads are not a part of the contingency table, 
as they lack information on hail occurrence. Then, we move to the 
second verification step (Fig. 3d), where a correction of point-to-point 
verification method is performed using the neighborhood verification 
method with an allowable displacement radius of 11 km. Here, we are 
only examining impacted hailpads and checking if hail is simulated in
side a verification window. If it is, we consider it a hit, and if it is not, we 
consider it a miss. Therefore, we are decreasing the number of misses 
and increasing the number of hits compared to the results of a point-to- 
point method used in the previous step. The neighborhood of only 
impacted hailpads is scanned, as we cannot be certain if hail did or did 
not occur in the vicinity of an unimpacted hailpad. In this way, we are 
allowing the model to offset the observed hail slightly, but we are not 

penalizing it for simulating hail in the vicinity of an unimpacted hailpad 
because we cannot be certain that hail truly did not occur somewhere 
near the unimpacted hailpad. Note that Fig. 3d shows squared verifi
cation window rather than circular verification window that is used in 
our verification approach, as it is easier to formulate schematic overview 
of verification on rectangular grid. The next step (Fig. 3e) considers 
filtering false alarms in the area within 11 km of the hailpad that reports 
hail. Every station where hail is simulated and not reported and is within 
11 km from station that did report hail, is ignored in the contingency 
table. Therefore, in this step, we are decreasing the number of false 
alarms around the area that reported hail. Hence, by completing this 
step we do not penalize the model for simulating hail where none was 
observed, as long as neighborhood hailpads reported hail. Therefore, we 
are allowing the model to simulate hail anywhere near (up to 11 km) the 
hailpad that reported hail and thereby we are representing the uncer
tainty in observations and considering the inability of the high- 
resolution models to exactly reproduce such small-scale phenomena. 
Finally, the last step (Fig. 3f) considers constructing a contingency table 
and computing categorical skill scores, such as probability of detection 
(POD), false alarm ratio (FAR) and extremal dependence index (EDI) 
(Ferro and Stephenson, 2011). 

4. Results and discussion 

4.1. Evaluation of surface conditions 

The first phase of evaluation is a comparison between simulated and 
observed hourly values of 2-m temperature (T2), 2-m relative humidity 
(RH2), 2-m equivalent potential temperature (Θe2) and hourly maxi
mums of 10-m wind speed (V10) at automatic meteorological stations 
across Croatia. The comparison is made for a period between 00 UTC 
and 24 UTC on the day hail was observed and for the grid point closest to 
the meteorological station’s position. RMSE is determined and decom
posed into three components following Murphy (1988) and Takacs 
(1985): (i) bias of the mean (MBIAS), (ii) bias of the standard deviation 

Fig. 3. Schematic description of a verification methodology. (a) Starting point of a verification process. Blue shading indicates grids where hail was simulated. 
Unimpacted hailpads are represented with black dots, and impacted hailpads are represented with red dots. (b) Point-to-point verification method. Hits are shaded in 
green, and misses are shaded in red. (c) Contingency table as the result of a point-to-point verification method. (d) Neighborhood verification method. Verification 
window is indicated with a magenta square. (e) Upscaling of hail observations. Verification windows are represented with magenta squares. (f) Final contingency 
table. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(SBIAS), and (iii) dispersion or phase error (DISP) in line with the 
following relation: 

1
MN

∑M

k=1

∑N

i=1

(
xi,k − yi,k

)2
=

1
M
∑M

k=1
(xk − yk)

2
+ [σk(x) − σk(y) ]2

+ 2σk(x)σk(y)[1 − rk(x, y) ]
(2)  

where x and y are modelled and measured data, respectively; k and i are 
indices in space and time, respectively; M is the number of stations; N is 
the number of time steps; σ is the standard deviation; r is the coefficient 
of correlation between modelled and measured data; and bars denote 
time means. The left-hand side represents the square of RMSE (mean 
square error), while the three terms on the right-hand side of Eq. (2) are 
the squares of MBIAS, SBIAS and DISP. 

RMSE components averaged over all stations in Fig. 4 show similar 
results across all ensemble members and all cases considered. RMSE 
does not exceed 3.32 ◦C, 14.3%, 4.94 m/s and 6.36 K for T2, RH2, V10, 

and Θe2, respectively. Moreover, for 25 June 2017 and 24 July 2017, the 
greatest contribution to RMSE is from phase errors, indicating that there 
are temporal and/or spatial shifts present between simulated and 
observed fields. Although RMSE is generally smaller for the 16 
September 2017 case, there is a greater contribution of biases of the 
mean to RMSE compared with the other cases. A positive MBIAS of T2 
and a negative MBIAS of RH2 suggest that the model generally over
estimated the observed temperature and, consequently, underestimated 
the observed relative humidity. Interestingly, MBIAS of Θe2 shows that 
equivalent potential temperature is underestimated in 25 June 2017 and 
24 July 2017 cases, but overestimated in 16 September 2017 case. 

Further, WRF’s performance in simulating T2, RH2 and Θe2 is 
compared to that of ECMWF Integrated Forecasting System (IFS) 
(Fig. 4). Interestingly, WRF seems to perform better compared to 
ECMWF IFS in terms of simulating T2 in all three cases considered 
(except the NSSL2 members for 25 June 2017 case), but similar in 

Fig. 4. Performance diagrams indicating RMSE decomposition terms across ensemble members. Each member is denoted on the x axis with the acronym indicating a 
combination of microphysics and PBL parameterization scheme. RMSE denotes total RMSE, MBIAS bias of the mean, SBIAS bias of the standard deviation and DISP 
dispersion or phase error. Performance for 2-m temperature (a), (b), and (c); 2-m relative humidity (d), (e), and (f); 2-m equivalent potential temperature (g), (h), and 
(i); 10-m wind speed(j), (k), and (l); for the three hail events analyzed (columns) is given. Every symbol represents the average values of RMSE, MBIAS, SBIAS and 
DISP across all stations considered. Colors represent members with the same microphysics scheme. Teal markers represent the values associated with ECMWF IFS. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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simulating observed values of RH2 for 25 June 2017 and 24 July 2017 or 
slightly better in 16 September 2017 case. Overall, both models show 
similar performance in simulating observed Θe2 values although 
ECMWF IFS shows positive MBIAS for the 25 June 2017 case opposed to 
the negative MBIAS produced by all WRF ensemble members. Moreover, 
note that WRF’s performance is evaluated using 1-hourly fields, while 
ECMWF IFS’s performance is evaluated using 3-hourly fields as 1-hourly 
outputs are not available for ECMWF IFS model. However, similar re
marks are obtained when evaluating 3-hourly fields from WRF and 3- 
hourly fields from ECMWF IFS (not shown). 

Overall, general atmospheric conditions are well represented by all 
ensemble members in all cases considered, and they are in the range of 
the errors obtained in other numerical studies (e.g., Kehler-Poljak et al., 
2017; Milovac et al., 2016; Poljak et al., 2014). It seems that different 
combinations of parameterization schemes did not show a systematic 
tendency to overestimate or underestimate surface observations 
(considering all cases together), which can be partially attributed to the 
averaging of deviations within the domain. Locally, the deviations at a 
particular station may be greater. Considering the importance of eval
uating surface observations at stations affected with severe weather as 

Fig. 5. Comparison of measured and simulated lightning flash accumulation in the time window from 00 UTC to 24 UTC on 16 September 2017 for (a) LINET 
network, (b) LIN-BouLac, (c) LIN-MYNN, (d) LIN-YSU, (e) MORR-BouLac, (f) MORR-MYNN, (g) MORR-YSU, (h) NSSL2-BouLac, (i) NSSL2-MYNN, (j) NSSL2-YSU, (k) 
WSM6-BouLac, (l) WSM6-MYNN, and (m) WSM6-YSU. As a reference, the values of t, k, l that optimize each member are indicated above ensemble member acronym. 
However, note that the presented fields are obtained using median t, k, l values for all ensemble members and all cases considered. 
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opposed to averaging the results in the whole domain, two representa
tive stations for each hail event analyzed are chosen, and for those 
stations, the measured and simulated time series of surface conditions 
are inspected. The results are shown in Supplement (Fig. S1, S2 and S3). 
Overall, the majority of ensemble members captured the time evolution 
of observed surface values well, although some overestimation or un
derestimation may be present, depending on the case analyzed. The 
worst performance is obtained for maximum wind speeds as model tends 
to shift the observed maximums in time (and possibly in space). 

4.2. Lightning Potential Index results 

Lightning potential index [J/kg] highlights the areas where the po
tential for electrical activity exists, and as such, it is not directly con
nected to the observed number of lightning flashes. Therefore, to 
quantitatively compare these two fields, the conversion of LPI to the 
number of lightning flashes needs to be performed. Here, we convert LPI 
to the number of lightning flashes, similar to Brisson et al. (2021), by 
first defining a minimum value of LPI, t, for which a lightning flash was 
produced. Second, a linear relationship between LPI and the number of 
lightning flashes is assumed, such that: 

LPIadj =

{
0,when LPI ≤ t

k∙LPI + l,when LPI > t  

where LPIadj [km− 2 h− 1] denotes adjusted LPI, i.e., LPI converted to the 
number of lightning flashes. Furthermore, the parameters t, k and l are 
sampled across [0.001, 10], [0, 5], [− 20,20] domain, respectively, and 
for every combination of these parameters, hourly means of LPIadj are 
calculated. Then, a distribution function associated with the hourly 

means of LPIadj is compared with the distribution function associated 
with the observed hourly means of lightning flashes. The values of pa
rameters k, l, and t, for which the RMSE between the two discussed 
distribution functions is minimal, are considered optimal. For every 
model configuration and every hail case considered, a unique set of 
parameters, k, l, and t, minimize RMSE between the discussed distri
bution functions, leading to a set of 36 values for each parameter. In the 
subsequent analysis, we choose the median values of obtained sets of 
parameters to investigate potential discrepancies across different model 
configurations and different hail cases. The medians and standard de
viations are t = 0.1 ± 0.09, k = 0.11 ± 0.04 and l = − 0.3 ± 0.35. 

Daily sums of both LPIadj (Fig. 5b-m) and the observed number of 
total lightning flashes from LINET network (Fig. 5a) gridded on the 
model grid for one of the analyzed hail cases (16 September 2017) are 
presented. Overall, it seems that all ensemble members capture the 
general spatial pattern of observed lightning activity well, although 
there are some local discrepancies between simulated and observed 
lightning activity. However, the ensemble members with NSSL2 
microphysics scheme seem to underestimate the intensity of the 
observed lightning activity. On the other hand, the most intense light
ning activity seems to be produced by the members with the WSM6 and 
MORR microphysics scheme. Additionally, Fig. 5b–m shows the values 
of t, k and l that optimize each ensemble member separately even though 
the presented fields are obtained by considering median values of t, k 
and l. Note that the parameters t, k and l that optimize each ensemble 
member separately do not change considerably between members (this 
is also true in the two cases not shown) indicating that standard de
viations associated with these parameters are coming from differences 
among cases, rather than differences among ensemble members. This 

Fig. 6. Hourly sums of the number of lightning flashes across the entire domain (d03 from Fig. 2) for the three hail events analyzed: (a) 25 June 2017, (b) 24 July 
2017, and (c) 16 September 2017. Both observed (black) and simulated lightning activities for each ensemble member (colors in legend) are shown. 
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highlights the fact that more cases would be needed to obtain a set of 
parameters that are optimal in majority of thunderstorm environments. 

Looking at temporal evolution of lightning, similar remarks can be 
found (Fig. 6). Fig. 6 shows the hourly sums of the simulated and 
observed numbers of lightning flashes over the entire innermost domain 
shown in Fig. 2. It is clear that the members with NSSL2 microphysics 
systemically underestimate the observed lightning activity. At the same 
time, the members with the most intense lightning activity mostly have a 
WSM6 microphysics scheme. 

Moreover, the observed lightning activity on 25 June 2017 is 
underestimated in all ensemble members except for the WSM6-BouLac 
combination. On 24 July 2017, the observed number of lightning 
flashes is overestimated in members with WSM6, as well as the MORR 
microphysics parameterization scheme. Interestingly, a time shift of up 
to 6 h, depending on the parameterization considered, between the 
onset of the maximum observed and simulated lightning activity is 
present in simulations for both 25 June 2017 and 24 July 2017. Con
vection occurring too early may occur due to various reasons including 
lack of data assimilation but also too strong coupling with daily cycle of 
convection and associated surface fluxes. While this issue has been a 
common property of convection-parametrized models (e.g. Ban et al., 
2015; Manzato et al., 2018), considerable uncertainty of timing of 
convective precipitation exists also for convection-permitting model 
simulations (e.g. Bechtold et al., 2014; Clark et al., 2016). 

The best matching between the simulated and observed onset of 
lightning activity and the number of lightning flashes is obtained for the 
nocturnal convection, hailstorm on 16 September 2017. Nevertheless, a 
discrepancy between the number of flashes simulated with WSM6 and 
NSSL2 microphysics schemes is present in this case as well. Since the 
lightning activity for this case peaks at the end of the simulation time, 

observed lightning activity for the extended period until 03 UTC the next 
day is shown in Supplement (Fig. S3). 

Furthermore, to obtain a more detailed and quantitative description 
of ensemble member performance, the SAL verification method is per
formed. SAL analysis is performed on daily accumulated fields of both 
observed and simulated lightning activity to mitigate the effects of 
temporal shifts in the onset of observed and simulated convection 
(Fig. 7). SAL diagrams show that the ensemble members for 25 June 
2017 exhibit lightning objects that are too small or too peaked, as 
indicated by the S component’s negative values. Some of the members 
slightly overestimate, and others underestimate observed amplitudes. 
The object locations are relatively well reproduced in most members 
except those with the NSSL2 microphysics scheme. For the 24 July 2017 
case, both structure, S, and amplitude, A, are well reproduced by all 
ensemble members, except for the WSM6-YSU member, which re
produces overly peaked objects, as indicated by the S component being 
close to a value of − 2. Again, the members with the NSSL2 microphysics 
scheme exhibit the smallest A, indicating the underestimation of light
ning activity. Interestingly, members with WSM6 scheme show large 
differences in performance for different PBL schemes with MYNN 
scheme performing the best and YSU scheme preforming the worst in 
terms of S component. The values of all components for case 16 
September 2017 are close to 0, indicating good performance of all 
ensemble members. Furthermore, the discrepancies between lightning 
activity simulated with WSM6 and NSSL2 members are highlighted 
mostly in the A and S components. 

Overall, analyzing the performance in all cases together, we can see 
that majority of ensemble members show similar performance, except 
those with NSSL2 microphysics and WSM6-YSU combination. The 
members with NSSL2 microphysics show amplitudes furthers from zero 

Fig. 7. SAL diagrams for the daily accumulated number of lightning flashes for all ensemble members (marked with different symbols) obtained for: (a) 25 June 
2017, (b) 24 July 2017, (c) 16 September 2017, and (d) all cases together. Every symbol shows the values of all three SAL components; amplitude (A) and structure 
(S) are indicated on the y-axis and x-axis, respectively, while the value of the location component (L) is indicated by the fill colour of the symbols. The optimal values 
(all three components equal to 0) are indicated with horizontal and vertical lines. Additionally, green markers and stars show medians of A, S and L in all the cases 
analyzed for every MP and PBL parameterization scheme selected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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in the SAL diagrams, indicating that these members did not reproduce 
the intensity of the observed lightning activity. Consequently, for our 
case studies this microphysics parameterization scheme seems to be the 
least appropriate choice of all schemes considered. On the other hand, 
looking at the performance of all cases together, WSM6-YSU member 
produces S component close to − 1 indicating that this combination 
produces overly peaked objects. All the other considered configurations, 
except those with NSSL2 scheme, show similar performance in the 
corresponding median values and all of them could be suitable choices 
for future simulations of lightning events. However, it should be noted 
that WSM6 scheme slightly overestimates observed amplitudes and 
produces the most intense lightning activity of all microphysics schemes 
analyzed. Further, the performance of analyzed PBL schemes is similar, 
although MYNN seems to perform slightly better compared to BouLac 
and YSU, while YSU seems to be the worst choice. 

Interestingly, single- and double-moment microphysics schemes 
yield similar performance, and no prevalence of either of the two ap
proaches is apparent. These results are in agreement with the analysis 
conducted by Lagasio et al. (2017), who analyzed LPI performance in 
multi-microphysical ensemble simulation of a back-building mesoscale 
convective system over Genoa, Italy. They found no distinction in per
formance between single- and double-moment microphysics schemes. 
Moreover, the greatest LPI values and consequently the most intense 
lightning activity were produced by the WSM6 member, while the 
NSSL2 scheme with predicted cloud condensation nuclei (CCN) 

produced lower LPI values (note that we use NSSL2 scheme with steady 
background CCN). On the other hand, Sokol and Minářová (2020) 
compared the impact of single- and double-moment microphysics 
schemes on LPI results within the COSMO NWP model during 10 
thunderstorm days in central Europe and concluded that LPI showed 
better performance while using double-moment cloud microphysics 
scheme. However, it should be mentioned that the cloud microphysics 
used in Sokol and Minářová (2020) is described differently in COSMO 
NWP than in WRF. Nevertheless, similar to previous studies (Lagasio 
et al., 2017; Sokol and Minářová, 2020; Yair et al., 2010), LPI was found 
to be a suitable tool in simulating the observed lightning activity during 
the selected hail events. 

4.3. Hail results 

4.3.1. HAILCAST tuning 
Firstly, to avoid a considerable number of false alarms obtained by 

activating HAILCAST in every grid cell where the vertical velocity ex
ceeds 10 ms− 1, four different thresholds for activating HAILCAST are 
examined: 10, 15, 18, and 20 ms− 1. For the selected thresholds, a point- 
to-point comparison between simulated and observed hail is performed, 
and hit rate (a/(a + c)) and false alarm rate (b/(b + d)) values are 
determined for all cases and all ensemble members (Fig. 8), where a 
denotes for observed-forecasted, b not observed-forecasted, c observed- 
not forecasted and d not observed-not forecasted event in the 

Fig. 8. Performance diagrams depicting hit rate and false alarm rate for different values of HAILCAST activation thresholds for all ensemble members and all cases: 
(a) 25 June 2017, (b) 24 July 2017, and (c) 16 September 2017. Thresholds of 10, 15, 18 and 20 ms− 1 are examined. Hit rates for all ensemble members are shown as 
blue lines, while the thick blue line represents ensemble medians. False alarm rates for all ensemble members are shown as red lines, while the thick red line 
represents ensemble medians. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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contingency table. It is clear that if the threshold for HAILCAST acti
vation was 10 ms− 1, HAILCAST would activate in too many grid points, 
producing a forecast with many false alarms. By choosing a greater 
activation threshold, false alarm rates are reduced, but so are hit rates. 

Here, we choose a threshold of 18 ms− 1, as median hit rates corre
sponding to this value are still greater than or equal to 0.8 with a 
reduced false alarm rate compared with that corresponding to the 10 
ms− 1 threshold. By doing this, we are maximizing the difference 

Fig. 9. Hail forecast for 16 September 2017. The area where hail was forecasted from 00 to 24 UTC on 16 September 2017 is shaded in blue. The position of hailpads 
is indicated with black dots. Hailpads that registered hail are marked with red circles. The position of the specially designed hailpad polygon is marked with a black 
rectangle. Forecasts across all ensemble members are shown: (a) LIN-BouLac, (b) LIN-MYNN, (c) LIN-YSU, (d) MORR-BouLac, (e) MORR-MYNN, (f) MORR-YSU, (g) 
NSSL2-BouLac, (h) NSSL2-MYNN, (i) NSSL2-YSU, (j) WSM6-BouLac, (k) WSM6-MYNN, and (l) WSM6-YSU. The best performing member is (k) WSM6-MYNN, and the 
worst performing member is (l) WSM6-YSU. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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between hit rate and false alarm rate and that corresponds to maxi
mizing Peirce Skill Score ((ad-bc)/((a + c)(b + d)) = POD - FAR) (Peirce, 
1884). Looking at Fig. 8, there is a better performance in terms of Pierce 
Skill Score for 16 September 2017 case, but the relative change in terms 
of Pierce Skill Score between the 10 ms− 1 and 18 ms− 1 thresholds is 
greater for 25 June 2017 and 24 July 2017 cases. This indicates that 
there is a greater benefit in introducing a new threshold for 25 June 
2017 and 24 July 2017 cases in terms of the relative change of Pierce 
Skill Score between 10 ms− 1 and 18 ms− 1 thresholds. However, note that 
this threshold is obtained based on three hail events and four threshold 

values and might not be generally applicable. 

4.3.2. HAILCAST results 
Analysis of HAILCAST results is based on the comparison between 

simulated hail swaths and ground observations for a period from 00 UTC 
to 24 UTC on the day when hail was observed. To eliminate some of the 
uncertainty due to temporal variability between observed and simulated 
convection, we accumulated a simulated dataset for a period of 24 h. 
First, we perform a qualitative comparison between simulated and 
observed hail. For this reason, Fig. 9 shows the areas where hail is 

Fig. 10. Performance diagrams across all ensemble 
members for (a) 25 June 2017, (b) 24 July 2017, and 
(c) 16 September 2017, (d) all analyzed cases and (e) 
each parametrization scheme in all cases considered. 
Values of categorical skill scores probability of 
detection (POD), 1 - false alarm ratio (1-FAR) and 
extremal dependence index (EDI) are given. The 
colour scale denotes the best (green) and the worst 
(red) performance. (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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forecasted within a 24 h period along with denoted hailpads that 
recorded hail for the case of 16 September 2017. Fig. 8 suggests a 
generally good spatial agreement between simulated and observed hail 
for all ensemble members. Nonetheless, all ensemble members exhibit a 
certain number of false alarms, i.e., hail is simulated, but the hailpad did 
not register hail. Furthermore, out of all combinations, the member 
NSSL2-MYNN shows the smallest area covered with hail. 

To obtain a quantitative description of this evaluation, an upscaled 
neighborhood verification method is performed (as described in Section 
3.4) for all ensemble members and all cases considered. The sensitivity 
of results is tested to the choice of allowable displacement radius. Since 
the average distance between the majority of hailpads is 5.5 km, three 
different radiuses are tested – 6, 11 and 22 km. For each of the radiuses 
POD, FAR, and EDI are calculated (Fig. 10 and Supplement S5, S6). 
Fig. 10 shows the results for allowable displacement of 11 km as it is 
determined that forecast has sufficient skill for that allowable 
displacement distance (majority of EDI values for evaluation of all cases 
greater than 85%) and the differences between members are better 
highlighted compared to the results for 22 km radius. Note that Fig. 10 
indicates 1-FAR values; therefore, the perfect forecast is associated with 
all considered skill scores equal to 1. 

For the 16 September 2017 case, POD values greater than or equal to 
80% for most ensemble members confirm that the model successfully 
produced hail where it was observed. At the same time, all ensemble 
members produced a considerable number of false alarms, as indicated 
by FAR values greater than 45% or 1-FAR values lower than 55%. In 
addition to the potential tendency of the model to overestimate hail, 
some degree of false alarms can be attributed to the limited spatial in
formation regarding hail occurrence provided by the hailpad network, i. 
e., only information about hail occurrence at the exact position of the 
hailpad was available. Theoretically, hail could have occurred in the 
vicinity of the hailpad and not have been recorded. Narrowing down 
towards a ranking of ensemble members, the best performance is ob
tained with the WSM6-MYNN member with the highest values of POD 
and EDI and relatively small values of FAR. In terms of FAR, the best 
performance shows MORR-MYNN member, but with lower POD and 
EDI. In contrast, the worst performing member seems to be WSM6-YSU 
according to POD and EDI values while LIN-MYNN member produces 
the most false alarms. 

Furthermore, the majority of POD values associated with the 25 June 
2017 hailstorm are greater than 90% (Fig. 10a), suggesting that the 
observed hail was successfully captured. In this case, there is less false 
alarms compared to the previous case; FAR values for all members are 

lower than 49% (or 1-FAR values greater than or equal to 51%). Overall, 
WSM6-BouLac member yield the best performance in terms of POD and 
EDI with relatively low FAR, while the NSSL2-YSU member yields the 
worst performance with the lowest POD and EDI values. The area 
affected with hail for the best- and worst-performing members is shaded 
in blue in Fig. 11. 

Similar results are obtained for 24 July 2017 (Fig. 10b); the majority 
of POD values are equal to 100%, suggesting that the model successfully 
captures the observed hail. However, FAR values above 94% indicate 
that all ensemble members significantly overestimate the area affected 
by hail. Furthermore, POD values of 33% and 67% for LIN-YSU, MORR- 
MYNN and MORR-YSU members indicate that the observed hail was not 
captured in these configurations. For this particular case, it seems that 
the worst performing member is LIN-YSU since this member did not 
simulate observed hail and at the same time produced a considerable 
number of false alarms. Other members show a similar performance, and 
there seems to be no one member with the best performance. The area 
affected with hail for one of the best- and worst-performing members is 
shaded in blue in Fig. 11. 

Additionally, the performance of the ensemble in all cases together is 
examined (Fig. 10d) to aggregate results and provide a more robust 
evaluation of each member performance during all analyzed cases. The 
joint analysis shows that WSM6-BouLac and LIN-YSU might be the MP- 
PBL combinations that yield the best results in terms of EDI and the 
difference between POD and FAR, while NSSL2-MYNN and NSSL2-YSU 
might be the worst MP-PBL choices. Although, it should be noted that 
the differences in performance across ensemble members are relatively 
small (if we exclude the members with NSSL2 microphysics scheme). 
Furthermore, EDI values in the joint evaluation for majority of cases are 
greater than 0.9 and coincide well with the trends observed in the POD 
values in both the joint and separate evaluations. Note that in evaluation 
of events performed separately, EDI values obtain the perfect value (EDI 
= 1) because POD obtains the perfect value as well (POD = 1) regardless 
of the relatively large FAR, which is avoided in assessment of the 
aggregated results. This behavior stems from the formulation of EDI 
(Ferro and Stephenson, 2011) which suffers from a small number of data 
used in evaluation. Finally, those remarks highlight the need of using 
more events for verification in order to achieve more detailed results, 
especially for metrics related to rare events, as well as the need of 
examining multiple skill scores when evaluating such extreme and rare 
events. 

Further, a joint evaluation of each parameterization option in all 
cases together is performed (Fig. 10e). Joint evaluation reveals that out 

Fig. 11. Hail forecast for 25 June 2017 for the best (a) MORR-YSU and the worst (b) NSSL2-YSU performing members and 24 July 2017 for one of the best (c) NSSL2- 
MYNN and the worst (d) LIN-YSU performing members. The area where hail was forecasted from 00 to 24 UTC on the day hail was reported is shaded in blue. The 
position of hailpads is indicated with black dots. Hailpads that registered hail are marked with red circles. The position of the specially designed hailpad polygon is 
marked with a black rectangle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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of all considered microphysics options, LIN seems to perform the best, in 
terms of POD and EDI values with relatively low FAR values. Not sur
prisingly, NSSL2 is the worst microphysics option out of all considered in 
terms of POD and EDI values. Looking at the performance of PBL 
schemes, BouLac seems to be the best option, while YSU seems to be the 
worst option in terms of POD and EDI values, although the difference in 
skill scores between YSU and MYNN are small. Interestingly, even NSSL2 
scheme performs better when coupled with BouLac scheme rather than 
MYNN and YSU schemes (Fig. 10d). Note that YSU scheme performed 
the worst in LPI evaluation as well (Fig. 7d). This could be due to the fact 
that YSU is a nonlocal scheme (compared to the BouLac and MYNN that 
are local schemes) and YSU has been found to over deepen the PBL in 
springtime deep convective environments (Coniglio, 2012). This then 
results in too much dry air near the surface which leads to the under
estimation of MLCAPE (e.g. Cohen et al., 2015; Milovac et al., 2016). On 
the other hand, BouLac is a local scheme and it is designed to better 

represent terrain-enhanced turbulence (Cohen et al., 2015) and given 
the highly complex terrain in Croatia, a better representation of terrain- 
enhanced turbulence could lead to better results. 

Not surprisingly, analyzed skill scores obtain larger values for larger 
verification radiuses and smaller values for smaller verification radiuses 
(Figs. S1.1 and S1.2 in Supplement). When comparing the joint evalu
ation for all cases considered for verification radius of 6 km, WSM6- 
BouLac member stands out as the best performing in terms of EDI and 
POD with relatively small FAR compared to the other members. Inter
estingly enough, even at 6 km, the members with NSSL2 scheme seem to 
perform worse than the other members, looking at all the cases together. 
On the other hand, looking at the performance at 22 km of all cases 
together, all members obtain their largest EDI, POD and 1-FAR values. 
Again, members with NSSL2 scheme perform worse compared to the 
other members. It seems that WRF-HAILCAST forecast could be 
considered reliable at the scale of 22 km, although one should consider 

Fig. 12. Comparison between observed (OBS) and simulated maximum hailstone diameters at the point closest to the impacted hailpad for (a) 25 June 2017, (b) 24 
July 2017, (c) 16 September 2017, (d) all cases considered, for all ensemble members, and (d) each parametrization scheme in all cases considered. Boxes indicate 
medians and lower and upper quartiles, while whiskers are within 1.5 interquartile range from the lower and the upper quartile. Outliers are marked with black dots. 
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that even with 22 km verification radius there still is a substantial 
amount of false alarms compared to the observations from hailpad 
network. 

A point-to-point comparison between observed and simulated 
maximum hailstone diameters is also performed (Fig. 12). The boxplots 
depict maximum simulated hailstone diameters (larger than 5 mm) at 
the point closest to the hailpad that registered hail for each individual 
case, for all cases considered and for every parameterization scheme 
analyzed in all cases considered. All ensemble members for 25 June 
2017 and 16 September 2017 show a general overestimation of observed 
maximum hailstone diameters. On the other hand, only the WSM6- 
BouLac member was able to produce hailstone diameters of 54.2 mm 
observed on 24 July 2017. Interestingly, WSM6-MYNN member pro
duced the largest simulated maximum hailstone diameters for 16 
September 2017 case and shows the greatest spread of simulated hail
stone sizes. On the other hand, the largest hailstones with the largest 

spread of hailstone sizes for 25 June 2017 case are produced by WSM6- 
YSU and WSM6-BouLac members. Further, considering all cases 
together, it is apparent that WSM6 members produced the largest hail
stones with the largest spread of hailstone sizes. Moreover, WSM6 and 
MORR schemes seem to produce larger medians of hailstone sizes 
compared to LIN and NSSL2 microphysics schemes. This could be con
nected to the analysis presented in Manzato et al. (2020) who reported 
that WSM6 scheme reproduced hailstone sizes more similar to those 
observed than the other analyzed microphysics schemes. Interestingly, 
looking at all cases together, the discrepancies between simulated 
hailstone sizes among different PBL schemes considered are less 
apparent, although, YSU scheme seems to produce smaller spread of 
hailstone sizes which could be linked with the tendency of nonlocal 
schemes to produce too much dry air at the surface and underestimate 
MLCAPE. By discussing these results, one should note that the described 
comparison has several limitations: (i) the probability for the hailpad to 

Fig. 13. Boxplots of maximum hailstone sizes across the entire domain and all ensemble members for (a) 25 June 2017, (b) 24 July 2017, (c) 16 September 2017, (d) 
all cases considered, and (d) each parametrization scheme in all cases considered. Boxes indicate medians and lower and upper quartiles, while whiskers are within 
1.5 interquartile range from the lower and the upper quartile. 
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capture the largest hailstone is small given that the hailpad covers only 
0.25 m2 (Smith and Waldvogel, 1989), and (ii) such point-to-point 
analysis does not account for possible spatial shifts between observed 
and simulated hail swaths. Nonetheless, given all limitations, the ob
tained results seem to be in line with those by Adams-Selin et al. (2019), 
who reported that HAILCAST tends to underestimate hailstone sizes in 
the 50–74 mm category, while hailstone sizes in the 19–24 mm category 
are mostly overestimated (their Fig. 4e). However, given that hailstones 
in the 50–74 mm category are observed only in one case analyzed, a 
more detailed analysis of HAILCAST performance in simulating larger 
hailstone sizes (those in the 50–74 mm category) needs to be done to 
confirm observed tendencies. 

4.4. Discrepancies between schemes 

Simulated maximum hailstone diameters are compared among 

examined parameterization combinations and analyzed cases. Fig. 13 
highlights boxplots of simulated maximum hailstone diameters across 
the entire domain. It is clear that the median hailstone sizes vary within 
15 mm range across the entire ensemble. However, some tendencies 
could be extrapolated – maximum hailstone diameters are obtained by 
WSM6 microphysics members in all cases considered. On the other 
hand, minimum hailstone diameters are obtained by NSSL2 micro
physics members. Moreover, there is an overall tendency for WSM6 and 
MORR members to produce larger hailstones with greater interquartile 
spread of maximum hailstone sizes compared with the NSSL2 and LIN 
members. 

It is important to stress that both LPI and HAILCAST are highly 
dependent on updraft strengths and the graupel mixing ratios inside a 
thunderstorm. Fig. 14 displays comparable medians of updraft strength 
among ensemble members. It seems that there is a tendency for NSSL2 
members to produce weaker updrafts compared to other scheme 

Fig. 14. Boxplots of maximum vertical velocities for the points where hail is forecasted across the entire domain and all ensemble members for (a) 25 June 2017, (b) 
24 July 2017, (c) 16 September 2017, (d) all cases considered, and (d) each parametrization scheme in all cases considered. Boxes indicate medians and lower and 
upper quartiles, while whiskers are within 1.5 interquartile range from the lower and the upper quartile. 
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combinations. Additionally, there is also an indication that WSM6 
members produce slightly stronger updrafts; however, this difference 
between members is not as pronounced as it is when comparing hail
stone diameters. Nonetheless, in Fig. 15, a clear distinction in simulated 
graupel mixing ratios among members is displayed. NSSL2 members 
produce the smallest graupel mixing ratios, presumably due to weaker 
updrafts. The stronger the updrafts are, the higher the altitude at which 
particles can be transported and consequently the higher the number of 
ice particles that could collide with each other in the presence of 
supercooled liquid water, finally resulting in charge separation and 
hailstone growth processes. This could explain why NSSL2 members 
produce less intense lightning activity and hail intensity. These members 
produce weaker updrafts, resulting in fewer graupel particles, which 
leads to fewer collisions between species inside a thundercloud and thus 
weaker lightning and hail intensity. Interestingly, LIN members exhibit 

the greatest medians of graupel mixing ratios, but with larger spread 
compared with WSM6 and MORR members and greater vertical veloc
ities compared to MORR members, but at the same time tend to produce 
smaller hailstones. Further, the discrepancies between the performance 
of different PBL schemes are not as pronounced indicating that simu
lated hailstone sizes, updrafts and graupel mixing ratios are more sen
sitive to the choice of microphysics than PBL scheme. 

These results could be linked to those reported by Lagasio et al. 
(2017), who analyzed LPI performance in a multi-microphysical 
ensemble simulation of a back-building mesoscale convective system 
over Genoa, Italy. They found that the NSSL2 scheme with the predicted 
cloud condensation nuclei (CCN) concentration (note that we use NSSL2 
scheme with steady background CCN) produced a weaker vertical ve
locity field and lower graupel mixing ratios with respect to the WSM6 
scheme. This led to a less pronounced LPI and less intense lightning 

Fig. 15. Boxplots of maximum graupel mixing ratios for the points where hail was forecasted across the entire domain and all ensemble members for (a) 25 June 
2017, (b) 24 July 2017, (c) 16 September 2017, (d) all cases considered, and (d) each parametrization scheme in all cases considered. Boxes indicate medians and 
lower and upper quartiles, while whiskers are within 1.5 interquartile range from the lower and the upper quartile. 
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activity obtained by the NSSL2 scheme with predicted CCN compared 
with those obtained by the WSM6 scheme. Moreover, the strongest 
updrafts and highest graupel mixing ratios combined with the highest 
LPI and most intense lightning activity were produced by the member 
with the WSM6 parameterization scheme. 

The presented results showed that the simulated area affected with 
hail is sensitive both to the choice of microphysics and PBL scheme. 
Namely, microphysics scheme NSSL2 produces smaller areas affected 
with hail, thus resulting in smaller POD and EDI values compared to the 
other microphysics options. However, the performance between other 
microphysics options (LIN, MORR and WSM6) is similar. Similarly, PBL 
scheme BouLac seems to perform better in terms of simulating the area 
affected with hail properly, while the performance between other PBL 
schemes, namely, MYNN and YSU is similar, although YSU performs 
slightly worse. This could be due to the fact that nonlocal PBL schemes 
(such as YSU) produce drier and deeper PBL resulting in MLCAPE un
derestimation. On the other hand, BouLac scheme is designed to perform 
better in cases with terrain-induced turbulence (Bougeault and Lacar
rere, 1989). Since our simulations are performed in a highly complex 
terrain, this could be the reason that BouLac performs better compared 
to the other PBL schemes. 

Further, simulated hailstone sizes, updrafts and graupel mixing ra
tios are more sensitive to the choice of microphysics scheme. Namely, 
microphysics schemes WSM6 and MORR produce larger median hail
stone sizes compared to the LIN and NSSL2 microphysics schemes, with 
WSM6 producing larger hailstones compared to MORR. On the other 
hand, NSSL2 microphysics scheme produces the smallest hailstones, the 
weakest updrafts and the smallest graupel mixing ratios. 

5. Conclusions 

Although relatively frequent in Croatia, hail still remains a difficult 
phenomenon to forecast. For this reason, three selected hailstorms that 
occurred in Croatia are simulated with the WRF model at a 1 km grid 
spacing using HAILCAST and LPI alongside with a multiphysics 
ensemble of 12 members with combinations of four different micro
physics and three different PBL parameterization schemes. The main 
goal of this work is to assess the forecast ability and sensitivity to 
parameterization choice of HAILCAST and LPI in predicting hailstorms 
in Croatia. A detailed evaluation of hail and lightning results against hail 
observations from the hailpad network and lightning observations pro
vided by the LINET network is performed. 

Along these lines, the first part of the paper focuses on an assessment 
of model performance to simulate general surface conditions associated 
with hailstorms in Croatia. Model results are evaluated against hourly 
measurements of 2-m temperature, 2-m relative humidity, 2-m equiva
lent potential temperature and hourly maximums of 10-m wind speed 
from the Croatian network of automated meteorological stations. Using 
RMSE decomposition, it is shown that all ensemble members yield very 
similar performance across all hail cases analyzed. Moreover, the 
greatest contribution to RMSE in most members stems from dispersion 
or phase errors. Overall, surface measurements are reproduced in the 
complementary range of other numerical studies and ECMWF IFS by all 
ensemble members. 

The second part of this paper focuses on a comparison between LPI 
and observed lightning activity. Here, a conversion of LPI to the number 
of lightning flashes is performed, and the results of converted LPI are 
assessed via the SAL method against the observed number of lightning 
flashes. All ensemble members show good performance in simulating 
daily lightning activity associated with all three hailstorms analyzed, 
except those with the NSSL2 microphysics scheme. These members 
systematically underestimate the number of observed lightning flashes. 
On the other hand, in most cases, the most intense lightning activity is 
produced by the members with the WSM6 microphysics scheme. The 
temporal characteristics of observed lightning are reproduced only for 
the case with nocturnal convection; in other two cases with afternoon 

convection, lightning activity is simulated earlier than observed. 
The third part of the paper assesses the HAILCAST results against hail 

observations from the hailpad network. First, tuning of HAILCAST is 
performed and a new threshold for HAILCAST activation of 18 ms− 1 for 
vertical velocity is introduced to eliminate some of the false alarms 
connected to activating HAILCAST in too many grid points. Second, to 
eliminate some of the temporal uncertainty between simulated and 
observed convection, only daily accumulated fields of hail forecasting 
are analyzed. The results show good agreement between the observed 
and modelled hail occurrences. However, there are many false alarms 
present, indicating the model’s tendency to generally overestimate the 
area affected by hail. Notably, some of the false alarms could be 
attributed to the limited spatial information regarding hail occurrence 
that hailpad networks provide. Moreover, comparing simulated and 
observed maximum hailstone diameters, it seems that HAILCAST, on 
average, tends to overestimate observed hailstone diameters. Finally, it 
must be noted that evaluation is performed for three hailstorms only, 
and to achieve statistically more robust conclusions, a considerably 
larger number of hailstorms with larger spread of hailstone sizes needs 
to be included in the evaluation. 

Furthermore, the simulated maximum hailstone diameters are 
compared across the ensemble members. Maximum hailstones are 
simulated by the members with the WSM6 microphysics scheme, while 
the minimum hailstones are obtained by the members with the NSSL2 
microphysics scheme. Following this, the vertical velocity maximums 
and graupel mixing ratio maximums, representing the variables related 
to lightning and hail occurrence, reveal that the main difference be
tween members with the NSSL2 microphysics scheme and other mem
bers is the representation of convective updrafts resulting in 
significantly different graupel mixing ratios. Particularly, the NSSL2 
microphysics scheme members produce weaker updrafts in analyzed 
case studies, lower graupel mixing ratios and consequently lower po
tential for lightning activity and smaller hailstones. Interestingly, LIN 
members exhibit the greatest medians of graupel mixing ratios, but with 
larger spread compared with WSM6 and MORR members and greater 
vertical velocities compared to MORR members, but at the same time 
tend to produce smaller hailstones. 

Therefore, this analysis indicates that the members that better 
reproduced observed lighting activity and hail occurrence also produce 
a better distribution of updrafts and mixing ratios, comparable to those 
occurring during hailstorms in Croatia. This highlights the fact that there 
is no much impact on the results solely from HAILCAST and LPI, rather 
most of the skill depends on the WRF’s skill to simulate convection 
properly, if not also on the initialization fields from ECMWF analysis. 
For that reason, an ensemble approach should be adopted in operational 
use for prediction of lightning and hail. Moreover, even though hailpads 
are probably the only source of hail measurements at the ground, it 
would be extremely useful to assess the simulation results using other 
data sources as well, such as radar products, insurance claims or crowd- 
sourced hail reports. That would complement the hailpad dataset and 
would provide a spatially continuous information on hail occurrence. 
Following this, to get statistically more robust conclusions on HAILCAST 
and LPI performance, a considerably larger number of hailstorms needs 
to be examined. Further, in operational setting, data assimilation should 
be implemented to further improve predictability of such extreme 
events. However, given all limitations, the results presented here are 
promising and show that both HAILCAST and LPI could be valuable tools 
for real-time forecasting and climatological assessment of hail and 
lightning occurrence in current and possibly changing climates. 

Data Availability 

Data for this research were obtained from three sources. Lightning 
data were obtained from the Lightning Detection Network in Europe 
(LINET) https://www.nowcast.de/en/solutions/linet-data (Betz et al., 
2009). ECMWF model analysis fields used as initial and boundary 
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conditions can be obtained through the following link (http://www. 
ecmwf.int/). Hail and surface measurements are available through in
quiries of the Croatian Meteorological and Hydrological Service; for 
more information, please contact the following email address (uslu 
ge@cirus.dhz.hr). 
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