Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1184797

Neurodynamic Models of Top-Down Effects on Visual Perception


Marić, Mateja
Neurodynamic Models of Top-Down Effects on Visual Perception, 2022., doktorska disertacija, Filozofski fakultet u Rijeci, Rijeka


CROSBI ID: 1184797 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Neurodynamic Models of Top-Down Effects on Visual Perception

Autori
Marić, Mateja

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija

Fakultet
Filozofski fakultet u Rijeci

Mjesto
Rijeka

Datum
04.03

Godina
2022

Stranica
323

Mentor
Domijan, Dražen

Ključne riječi
neural networks ; visual attention ; top-down effects ; cognitive impenetrability of vision ; adaptive resonance theory ; color perception ;

Sažetak
This doctoral thesis aims to develop new neural network models that will explore how feedback projections in the visual cortex contribute to top-down modulations of visual perception. Two types of top-down effects are considered: 1) Selective visual attention and 2) prior expectations. The models represent modifications and extensions of previously published models of lateral inhibition and adaptive resonance theory. The proposed models are thoroughly evaluated using computer simulations implemented in MATLAB. The models’ outputs are compared with behavioral and neural data. The first part of this thesis develops a model of the recurrent competitive network with the ability to flexibly orient attention in a spatial map to either a single location in space, all locations occupied by an object, or all locations occupied by the feature value. To achieve this property, the network was augmented by biophysically plausible mechanisms emulating properties of synaptic and dendritic computation. The proposed network can simulate object-based attention and implement visual routines, such as mental contour tracing, when further embedded in a more extensive multi-scale neural architecture for boundary detection. The second part of this thesis develops a neural network for color perception based on adaptive resonance theory. The model explains how feedback projections contribute to the stable learning of color codes and conscious experience of colors. The model demonstrates that the same mechanisms that assure learning stability are also responsible for constraining the effect of top- down expectations on color perception. In general, the model indicates that top-down predictions, to a large extent, do not alter the content of conscious visual perception.

Izvorni jezik
Engleski

Znanstvena područja
Psihologija



POVEZANOST RADA


Projekti:
IP-2013-11-4139 - Metakognicija kod kategorijalnog učenja, mišljenja i razumijevanja (METCALTHIC) (Domijan, Dražen, HRZZ - 2013-11) ( CroRIS)
NadSve-Sveučilište u Rijeci-13.04.1.3.11 - Kognitivni i neurodinamički aspekti percepcije, učenja i mišljenja (Domijan, Dražen, NadSve - UNIRI Sredstva potpore znanstvenim istraživanjima) ( CroRIS)

Ustanove:
Filozofski fakultet, Rijeka

Profili:

Avatar Url Dražen Domijan (mentor)

Avatar Url Mateja Marić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada urn.nsk.hr

Poveznice na istraživačke podatke:

osf.io osf.io osf.io

Citiraj ovu publikaciju:

Marić, Mateja
Neurodynamic Models of Top-Down Effects on Visual Perception, 2022., doktorska disertacija, Filozofski fakultet u Rijeci, Rijeka
Marić, M. (2022) 'Neurodynamic Models of Top-Down Effects on Visual Perception', doktorska disertacija, Filozofski fakultet u Rijeci, Rijeka.
@phdthesis{phdthesis, author = {Mari\'{c}, Mateja}, year = {2022}, pages = {323}, keywords = {neural networks, visual attention, top-down effects, cognitive impenetrability of vision, adaptive resonance theory, color perception, }, title = {Neurodynamic Models of Top-Down Effects on Visual Perception}, keyword = {neural networks, visual attention, top-down effects, cognitive impenetrability of vision, adaptive resonance theory, color perception, }, publisherplace = {Rijeka} }
@phdthesis{phdthesis, author = {Mari\'{c}, Mateja}, year = {2022}, pages = {323}, keywords = {neural networks, visual attention, top-down effects, cognitive impenetrability of vision, adaptive resonance theory, color perception, }, title = {Neurodynamic Models of Top-Down Effects on Visual Perception}, keyword = {neural networks, visual attention, top-down effects, cognitive impenetrability of vision, adaptive resonance theory, color perception, }, publisherplace = {Rijeka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font