Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1184655

Heat Transfer Enhancement of Crossflow Air-to- Water Fin-and-Tube Heat Exchanger by Using Delta- Winglet Type Vortex Generators


Batista, Josip; Trp, Anica; Lenic, Kristian
Heat Transfer Enhancement of Crossflow Air-to- Water Fin-and-Tube Heat Exchanger by Using Delta- Winglet Type Vortex Generators // Energies, 15 (2022), 6; 2070, 25 doi:10.3390/en15062070 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1184655 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Heat Transfer Enhancement of Crossflow Air-to- Water Fin-and-Tube Heat Exchanger by Using Delta- Winglet Type Vortex Generators

Autori
Batista, Josip ; Trp, Anica ; Lenic, Kristian

Izvornik
Energies (1996-1073) 15 (2022), 6; 2070, 25

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
crossflow air-to-water fin-and-tube heat exchanger ; conjugated heat transfer ; air side vortex generators ; numerical analysis

Sažetak
The aim of this work is to numerically analyse fluid flow and heat transfer characteristics in a crossflow air-to-water fin-and-tube heat exchanger (FTHEX) by implementing two configurations of delta-winglet type vortex generators at the air side: delta-winglet upstream (DWU) and delta- winglet downstream (DWD). The vortex generators are mounted on a fin surface and deployed in a “common flow up” orientation. The effects of attack angles of 15°, 30° and 45° on air-side heat transfer and pressure drop were examined. Since the implementation of the full-size model would involve large numerical resources, the computational domain is simplified by considering a small segment in the direction of water flow. The fully developed temperature and velocity boundary conditions were set at the water inlets. To validate the defined mathematical model and numerical procedure, measurements have been performed on a plain FTHEX. The air side Reynolds number, based on hydraulic diameter, was in the range of 176 ≤ ReDh ≤ 400 and water side Reynolds number, based on inner tube diameter, was constant Redi = 17, 065. The results have shown that the highest increase in the Colburn factor j (by 11– 27%) and reduction in the air-side thermal resistance fraction (from 78.2–76.9% for ReDh = 176 to 76–72.4% for ReDh= 400) is achieved by using the DWD configuration with attack angle 45°. In addition, the overall heat transfer coefficient is improved by up to 15.7%. The DWD configuration with the attack angle 30° provides the greatest improvement in the heat transfer to pressure loss ratio, 5.2–15.4% over the range of ReDh studied.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-4095 - Povećanje energetske učinkovitosti izmjenjivača topline (HEXENER) (Trp, Anica, HRZZ - 2016-06) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-69 - Akumulacija i izmjena toplinske energije u sustavima obnovljivih izvora energije (Trp, Anica, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci

Profili:

Avatar Url Anica Trp (autor)

Avatar Url Kristian Lenić (autor)

Avatar Url Josip Batista (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Poveznice na istraživačke podatke:

doi.org

Citiraj ovu publikaciju:

Batista, Josip; Trp, Anica; Lenic, Kristian
Heat Transfer Enhancement of Crossflow Air-to- Water Fin-and-Tube Heat Exchanger by Using Delta- Winglet Type Vortex Generators // Energies, 15 (2022), 6; 2070, 25 doi:10.3390/en15062070 (međunarodna recenzija, članak, znanstveni)
Batista, J., Trp, A. & Lenic, K. (2022) Heat Transfer Enhancement of Crossflow Air-to- Water Fin-and-Tube Heat Exchanger by Using Delta- Winglet Type Vortex Generators. Energies, 15 (6), 2070, 25 doi:10.3390/en15062070.
@article{article, author = {Batista, Josip and Trp, Anica and Lenic, Kristian}, year = {2022}, pages = {25}, DOI = {10.3390/en15062070}, chapter = {2070}, keywords = {crossflow air-to-water fin-and-tube heat exchanger, conjugated heat transfer, air side vortex generators, numerical analysis}, journal = {Energies}, doi = {10.3390/en15062070}, volume = {15}, number = {6}, issn = {1996-1073}, title = {Heat Transfer Enhancement of Crossflow Air-to- Water Fin-and-Tube Heat Exchanger by Using Delta- Winglet Type Vortex Generators}, keyword = {crossflow air-to-water fin-and-tube heat exchanger, conjugated heat transfer, air side vortex generators, numerical analysis}, chapternumber = {2070} }
@article{article, author = {Batista, Josip and Trp, Anica and Lenic, Kristian}, year = {2022}, pages = {25}, DOI = {10.3390/en15062070}, chapter = {2070}, keywords = {crossflow air-to-water fin-and-tube heat exchanger, conjugated heat transfer, air side vortex generators, numerical analysis}, journal = {Energies}, doi = {10.3390/en15062070}, volume = {15}, number = {6}, issn = {1996-1073}, title = {Heat Transfer Enhancement of Crossflow Air-to- Water Fin-and-Tube Heat Exchanger by Using Delta- Winglet Type Vortex Generators}, keyword = {crossflow air-to-water fin-and-tube heat exchanger, conjugated heat transfer, air side vortex generators, numerical analysis}, chapternumber = {2070} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font