Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1184218

Development of the calibration model for real-time measurement of glycine concentration in glycine-water system using ANN


Gavran, Matea; Dorić, Hrvoje; Bolf, Nenad
Development of the calibration model for real-time measurement of glycine concentration in glycine-water system using ANN // 27HSKIKI - Book of abstracts
Veli Lošinj, Hrvatska, 2021. str. 318-318 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1184218 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of the calibration model for real-time measurement of glycine concentration in glycine-water system using ANN

Autori
Gavran, Matea ; Dorić, Hrvoje ; Bolf, Nenad

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
27HSKIKI - Book of abstracts / - , 2021, 318-318

Skup
27. hrvatski skup kemičara i kemijskih inženjera (27HSKIKI)

Mjesto i datum
Veli Lošinj, Hrvatska, 05.10.2021. - 08.10.2021

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
crystallization, process analytical technology, artificial neural network, ATR-FTIR spectroscopy, calibration

Sažetak
The subject of this research is the development of a calibration model based on in-situ ATR-FTIR measurements using artificial neural network (ANN) for monitoring the concentration of glycine in glycine-water system in a batch crystallizer. Supersaturation, as a driving force of batch cooling crystallization processes, has a strong effect on product properties, i.e. crystal morphology, purity and crystal size distribution.[1] Therefore, the application of process analytical techniques plays a vital role for real-time monitoring and controlling of crystallization processes in order to obtain high-quality products. Attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) is used for inline measurement of solute concentration. IR spectrum is characteristic of the vibrational structure of the substance in immediate contact with the ATR immersion probe.[2] To obtain useful information from the spectral data, a calibration model is needed. A calibration model for glycine concentration was developed based on experimental data. Experiments were conducted with different process conditions, including changes of solute concentration and the operating temperature. The developed ANN model has a multilayer perceptron structure. ANN was trained using FTIR spectral data with the corresponding temperature values collected in the laboratory crystallizer. Validation of the model was performed on an independent dataset not used during the neural network training. The application of the developed model for monitoring the concentration in real-time combined with solubility curve and metastable zone width provides information about supersaturation in real-time. That allows the application of a process control method for maintaining the desired degree of supersaturation and thus, obtaining uniform product properties.

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Projekti:
EK-EFRR-KK.01.1.1.07.0017 - Napredno vođenje procesa kristalizacije (CrystAPC) (Bolf, Nenad, EK - KK.01.1.1.07) ( CroRIS)

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Profili:

Avatar Url Nenad Bolf (autor)

Avatar Url Hrvoje Dorić (autor)

Avatar Url Matea Gavran (autor)


Citiraj ovu publikaciju:

Gavran, Matea; Dorić, Hrvoje; Bolf, Nenad
Development of the calibration model for real-time measurement of glycine concentration in glycine-water system using ANN // 27HSKIKI - Book of abstracts
Veli Lošinj, Hrvatska, 2021. str. 318-318 (poster, međunarodna recenzija, sažetak, znanstveni)
Gavran, M., Dorić, H. & Bolf, N. (2021) Development of the calibration model for real-time measurement of glycine concentration in glycine-water system using ANN. U: 27HSKIKI - Book of abstracts.
@article{article, author = {Gavran, Matea and Dori\'{c}, Hrvoje and Bolf, Nenad}, year = {2021}, pages = {318-318}, keywords = {crystallization, process analytical technology, artificial neural network, ATR-FTIR spectroscopy, calibration}, title = {Development of the calibration model for real-time measurement of glycine concentration in glycine-water system using ANN}, keyword = {crystallization, process analytical technology, artificial neural network, ATR-FTIR spectroscopy, calibration}, publisherplace = {Veli Lo\v{s}inj, Hrvatska} }
@article{article, author = {Gavran, Matea and Dori\'{c}, Hrvoje and Bolf, Nenad}, year = {2021}, pages = {318-318}, keywords = {crystallization, process analytical technology, artificial neural network, ATR-FTIR spectroscopy, calibration}, title = {Development of the calibration model for real-time measurement of glycine concentration in glycine-water system using ANN}, keyword = {crystallization, process analytical technology, artificial neural network, ATR-FTIR spectroscopy, calibration}, publisherplace = {Veli Lo\v{s}inj, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font