Pregled bibliografske jedinice broj: 1183255
Transition State Matrices Approach for Trajectory Segmentation Based on Transport Mode Change Criteria
Transition State Matrices Approach for Trajectory Segmentation Based on Transport Mode Change Criteria // Sustainability, 14 (2022), 5; 2756, 20 doi:10.3390/su14052756 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1183255 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Transition State Matrices Approach for Trajectory
Segmentation Based on Transport Mode Change Criteria
Autori
Erdelić, Martina ; Carić, Tonči ; Erdelić, Tomislav ; Tišljarić, Leo
Izvornik
Sustainability (2071-1050) 14
(2022), 5;
2756, 20
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
urban mobility ; transport mode ; real time change point detection ; mobile phone sensor data ; transition state matrices
Sažetak
Identifying distribution of users’ mobility is an essential part of transport planning and traffic demand estimation. With the increase in the usage of mobile devices, they have become a valuable source of traffic mobility data. Raw data contain only specific traffic information, such as position. To extract additional information such as transport mode, collected data need to be further processed. Trajectory needs to be divided into several meaningful consecutive segments according to some criteria to determine transport mode change point. Existing algorithms for trajectory segmentation based on the transport mode change most often use predefined knowledge- based rules to create trajectory segments, i.e., rules based on defined maximum pedestrian speed or the detection of pedestrian segment between two consecutive transport modes. This paper aims to develop a method that segments trajectory based on the transport mode change in real time without preassumed rules. Instead of rules, transition patterns are detected during the transition from one transport mode to another. Transition State Matrices (TSM) were used to automatically detect the transport mode change point in the trajectory. The developed method is based on the sensor data collected from mobile devices. After testing and validating the method, an overall accuracy of 98% and 96%, respectively, was achieved. As higher accuracy of trajectory segmentation means better and more homogeneous data, applying this method during the data collection adds additional value to the data.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
IP-2018-01-8323 - Adaptivno i prediktivno upravljanje utičnim hibridnim električnim vozilima (ACHIEVE) (Deur, Joško, HRZZ - 2018-01) ( CroRIS)
EK-H2020-857592 - Twinning koordinacijska akcija u području otvorenih podataka (TODO) (Musa, Anamarija; Tutić, Dražen; Vujić, Miroslav; Čavrak, Igor; Žajdela Hrustek, Nikolina; Kuveždić Divjak, Ana; Šalamon, Dragica, EK ) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus