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ABSTRACT Dispatching rules are most commonly used to solve scheduling problems under dynamic
conditions. Since designing new dispatching rules is a time consuming process, it can be automatised
by using various machine learning and evolutionary computation methods. In previous research, genetic
programming was the most predominantly used method for the automatic design of new dispatching
rules. However, there are many other evolutionary methods which use different representations than genetic
programming, that can be used for generating dispatching rules. Some, like gene expression programming,
were already successfully applied, while others like Cartesian genetic programming or grammatical
evolution, were not used to generate dispatching rules. This paper will test six different methods (genetic
programming, gene expression programming, Cartesian genetic programming, grammatical evolution,
stack representation and analytic programming) to generate new dispatching rules for the unrelated
machines environment, and will analyse how the tested methods perform on various scheduling criteria.
The paper also analyses how different individual sizes in the tested methods affect the performance and
average size of the generated dispatching rules. The results indicate that, except for the grammatical
evolution and analytic programming, all tested methods perform quite similar, with the results depending
on selected scheduling criterion. The results also demonstrate that Cartesian genetic programming was
the most resistant to the occurrence of bloat, and that it evolved dispatching rules of the smallest average
sizes.

INDEX TERMS Unrelated machines environment, Scheduling, Solution representations, Dispatching
rules

I. INTRODUCTION

Scheduling can be defined as the process of allocating a
set of available jobs to a certain set of limited resources,
in a way that some user defined conditions are satisfied
and one or more scheduling criteria are optimised [1].
Because most scheduling problems are NP-hard, various
metaheuristic algorithms are used to solve scheduling prob-
lems [2]. Since these methods search the solution space
for a concrete problem, they require that all information of
the scheduling problem is available before the start of the
system. This means that such methods can be applied only
for scheduling problems under static conditions, where it is

known in advance when certain jobs will be released into the
system, and what their properties will be. However, in many
situations such information is not available, meaning that it
is not known in advance when new jobs will arrive into the
system. Therefore, scheduling needs to be performed under
dynamic conditions, simultaneously with the execution of
the system. Since in such situations metaheuristic methods
can not be used to solve scheduling problems, many problem
specific heuristics, called dispatching rules, were defined in
the literature [3], [4].

Dispatching rules (DRs) create the schedule incremen-
tally, which means that each time a job needs to be sched-
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uled on a machine, the DR determines which of the available
jobs should be scheduled, and on which machine. In order to
determine which of the available jobs should be scheduled,
the DRs use certain job and system properties for assigning
a priority to each job, and then select the one with the best
priority value. For example, a DR could schedule jobs in the
order of their arrival, meaning that jobs which were sooner
released into the system will have a higher priority of being
scheduled. It is important to outline that when calculating
the priorities for jobs, DRs use only the information which
is currently available to them, and calculate the priorities
only of those jobs which were already released into the
system. Because of the previous reason, and also because
their execution time is substantially smaller than that of
metaheuristic methods, DRs are usually the method of
choice when solving scheduling problems under dynamic
conditions. One important disadvantage of DRs is that a
single DR does not perform well for all possible situations
and scheduling criteria, which would mean that new DRs
would need to be designed if no appropriate DR exists for
a given criterion, or scheduling condition. Unfortunately,
designing new DRs is a long and time consuming process,
which usually needs to be performed by a domain expert.

In order to solve the previously outlined problem, over the
last twenty years a lot of research concerned with scheduling
problems has focused on automatically designing new DRs
[5], [6]. Out of the many machine learning and evolutionary
computation approaches, genetic programming (GP) is the
most commonly applied approach for generating new DRs.
Dimopoulos and Zalzala [7], [8] were among the first who
used GP to generate new DRs for the single machine
environment, while [9] was the first to generate new DRs for
the job shop environment. The next several studies mostly
focused on applying GP in other machine environments,
like in the flexible job shop [10] or the parallel uniform
machines environment [11]. Several other studies focused
on extending the GP method in various ways, like adapting
GP for detecting overloaded machines in the system [12],
or generating DRs by GP for problems with additional
constraints like breakdowns [13], batch scheduling [14],
setup times and precedence constraints [15], or by using
a variety of constraints [16]. Another researched topic
is the generation of DRs for optimising multiple criteria
simultaneously, where different multi-objective and many-
objective algorithms were tested for optimising various
combinations of scheduling criteria [17]–[20]. GP was also
applied for designing due date assignment rules (DDARs),
which approximate the due dates of jobs which arrive into
the system. These DDARs were designed either on their
own [21], [22], or in combination with DRs which required
the development of new procedures for the simultaneous
development of DDARs and DRs [23], [24]. The order and
acceptance scheduling (OAS) problem, where in addition
to scheduling jobs on certain machines it also required
to determine which jobs will be accepted for scheduling,
was also extensively investigated, and it was shown that

GP generated good DRs even for this type of scheduling
problem [25]–[29]. Recent papers also shifted the focus on
some less investigated scheduling problems like the resource
constrained project scheduling problem [30], [31] and the
single machine problem with variable capacity [32], [33].

To further enhance the performance of the generated DRs,
several studies analysed how different ensemble learning
methods could be used to create ensembles of DRs, which
can perform better than a single DR [34]–[38]. Other studies
focused on scheduling with uncertainties in which some
problem parameters were not deterministic [39]–[41], or on
applying surrogate assisted GP to reduce the computational
cost of evolving new DRs [42]–[44]. A framework for
visualisation of the evolutionary process in order to better
understand the process of evolving DRs was proposed in
[45]. In [46] the authors propose a new strategy for selecting
subtrees in crossover and mutation operators. In it the
probability of selecting the subtree is based on its im-
portance and operator types. Selecting appropriate problem
instances for the evolution of DRs was studied in [47]. The
study proposes an active sampling method that selects good
instances during the evolutionary process. In [48] different
schedule generation schemes were compared to improve the
performance of generated DR, whereas in [49] the authors
focused on adapting the generated DRs for static scheduling
conditions. A multitask GP model which generates heuris-
tics for a wider range of problems is applied in [50], [51] to
generate more general DRs. In [52] automatically designed
DRs have been used to generate the initial population of a
genetic algorithm, which has lead to significantly improved
results when comparing to randomly generated populations
or those initialised by manually designed DRs. Beside GP,
gene expression programming (GEP) also received a certain
amount of attention for the generation of new DRs [53]–
[56], and mostly achieved equally good results as GP.

Since GP is predominantly used when generating new
DRs, several studies were concerned with the comparison
of different GP representations, or with the comparison
of GP to other methods for the automatic design of new
DRs. One such study was conducted by [57], in which
the authors compared three different representations of GP
for the creation of new DRs. The first representation used
certain job and system properties to determine which of the
existing manually defined DRs should be applied for the
current system conditions, making it quite similar to a deci-
sion tree. The second representation generates a completely
new DR by using arithmetic expressions. Finally, the third
representation represents a combination of the previous two,
since it allows that additional new DRs can be designed
which can be selected in place of the manually designed
DRs. In [58] the authors compared the DRs generated by GP
with those generated by artificial neural networks (ANNs)
and a linear representation which is defined as a weighted
linear sum of several job and system attributes. The results
demonstrate that the linear representation achieved the worst
results, while GP and ANNs achieved quite similar results.
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However, the main benefit of GP against ANNs is that it
evolves DRs which are easier to interpret, since it evolved
them in a form of arithmetic expressions. In [56], the
authors compared DRs generated by GP, GEP, iterative DRs
(IDRs) [59], and dimensionally aware GP [60]. Their study
demonstrated that apart for the IDRs which are used under
static scheduling conditions, usually there was no difference
among the other three methods. Therefore, it would mostly
depend on the users which one of the tested methods they
would apply.

From the previously outlined literature overview it is
evident that GP is predominantly applied for generating
new DRs, with GEP being used only in several occasions.
However, no previous study did extensively analyse the
effect of different solution representations, which are used
by various evolutionary computation methods, on the quality
of the generated DRs. Therefore, the objective of this paper
is to compare several GP methods with different solu-
tion representations and determine which of these methods
achieves the best performance on several scheduling criteria.
In addition to the standard GP and GEP, which were both
previously applied for generating new DRs, this study will
additionally use Cartesian GP (CGP), grammatical evolution
(GE), the stack representation and analytic programming
(AP) to generate new DRs for the unrelated machines
environment. In addition to testing the performance of the
previous four methods on several scheduling criteria, the
paper will also investigate the complexity of expressions
which are generated by the different methods, to identify
which methods generate the least complex expressions. The
main contributions of this paper can be summarised with
the following three points:

1) The first application of Cartesian GP, grammatical
evolution, the stack representation and analytic pro-
gramming for evolving new DRs.

2) A comparison of six methods for automatic evolution
of new DRs, which complements several previous
studies.

3) Analysis of the complexity of expressions generated by
the six evolutionary computation methods.

The rest of the paper is structured as follows. Section
II provides a short introduction of scheduling problems,
a description of the solution representations used by the
tested evolutionary computation methods, and finally de-
scribes how GP can be applied for automatic generation
of new DRs. In Section III the experimental design of
the problem sets is described, and additionally the selected
parameter values for the different methods are outlined. The
experimental results achieved by the six selected methods
on several scheduling criteria are presented in Section IV.
Section V provides a further analysis of the obtained results,
mostly concerning the average size of the generated DRs.
Section VI gives a brief conclusion and outlines possibilities
for future work.

II. BACKGROUND AND METHODOLOGY

A. UNRELATED MACHINES ENVIRONMENT
The unrelated machines environment is defined as a machine
environment which consists of n jobs and m machines.
Each one of the n jobs needs to be scheduled on one of
the m available machines. Once a job is scheduled on a
certain machine, it needs to be executed until it is finished,
meaning that no preemption is allowed. Additionally, each
machine can execute only one job at each moment. Thus, if
all machines are busy it will be required to wait until at least
one becomes available, so that another job can be scheduled.
The peculiarity of this environment is that each job j has a
different processing time for each machine i, meaning that
for each job machine pair a different processing time pij is
defined. Since jobs become available during the execution
of the system, the time at which jobs become available
(rj) also needs to be defined. Additionally, depending on
which scheduling criteria is optimised, each job can have
two additional properties defined, the due date (dj) and the
weight wj . The due date defines the point in time until which
the job should finish its execution, or otherwise a certain
penalty will be invoked. On the other hand, the weight
specifies the importance of jobs, denoting that certain jobs
should have a higher priority of being scheduled. Finally,
Cj will be used to denote the moment in time when job j
finished with its execution in the constructed schedule.

Although various scheduling criteria are defined in the lit-
erature [1], this study will focus on optimising the following
four scheduling criteria:

• Makespan (Cmax) - is defined as the largest comple-
tion time of all jobs:

Cmax = max
j

{Cj}. (1)

• Total flowtime (Ft) - denotes the sum of flowtimes of
all jobs:

Ft =
∑
j

(Cj − rj), (2)

• Weighted number of tardy jobs (Nwt) - denotes the
weighted sum of all tardy jobs (the formula is written
using the Iverson notation, in which the square brackets
return 1 if the condition in the square brackets holds,
otherwise it returns 0):

Nwt =
∑
j

wj [Cj > dj ], (3)

• Total weighted tardiness (Twt) - denotes the
weighted sum of tardiness values of all jobs:

Twt =
∑
j

wj max(Cj − dj , 0). (4)

The final thing which needs to be specified about schedul-
ing problems are the conditions under which the scheduling
process is conducted. In this study, scheduling will be
performed under dynamic conditions, which means that
no information about the future of the system is known
in advance. Therefore, it is unknown when jobs will be
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released into the system, and until they are released the
values of all other job properties will be unknown as well.
This means that the schedule cannot be created before the
execution of the system, since the required information will
be unavailable. Rather, the schedule needs to be constructed
in parallel with the execution of the system.

B. SOLUTION REPRESENTATIONS FOR GP
This section will give a short description of the represen-
tations that are used by the six evolutionary computation
methods which will be compared.

The tree representation of solutions is the most commonly
used representation in GP. The inner nodes of the tree
represent function nodes, which take the form of various
arithmetic, Boolean, or other kind of operations. On the
other hand, leaf nodes are always terminal nodes which
represent certain variables or constants. The size of the
expression is usually limited with a parameter that specifies
the maximum depth of the tree. The representation is quite
simple to interpret, and allows for GP to evolve expressions
of various complexity. However, the representation usually
suffers from a serious problem which is called bloat [61] .
Bloat represents the uncontrolled growth of expression trees
which occurs during evolution even though this growth does
not lead to any improvement in their performance. Tree
based GP is very susceptible to this problem, since by using
the maximum depth of trees it is difficult to precisely limit
the size of the expressions. Thus, selecting a too large value
for this parameter will result in solutions which are huge and
complex, while if a too small tree depth is chosen GP will
not be able to evolve expressions of the required complexity.

GEP [62] uses an alternative representation which does
not store the expression in the form of a tree, but rather in a
linear form similarly as genetic algorithms do. In this way
GEP tries to combine the simplicity of the representation
and operators from genetic algorithms, with the possibil-
ity to evolve expressions. The individuals in GEP are of
constant size, however, the part of the individual which is
used to form the expression depends on its structure. Each
GEP individual consists of one or more genes, where each
gene consists of a constant number of nodes and represents
an independent expression tree. Each gene can be divided
into two parts, the head and tail of the gene. The head
of the gene represents the starting h nodes of the gene,
where h is a user specified parameter. This part of the gene
can consist of any function and terminal nodes. The rest
of the nodes belong to the tail of the gene, whose size is
calculated as t = h ∗ (nmax − 1) + 1, where t is the tail
size, and nmax the maximum number of arguments from
all nodes in the function set. The tail of the gene consists
only of terminal nodes, which ensures that the gene will
consist of enough terminal nodes for it to be decoded into a
syntactically correct expression. Each gene is decoded into
an expression tree, however, depending on its structure not
all nodes are used for creating an expression. Finally, all
genes are combined using linking nodes, which are usually

manually defined function nodes.
CGP [63] uses a graph based representation to represent

solutions, although the individuals are represented as a list
of integer numbers which describe the structure of the graph.
The representation uses three parameters, which are the
number of columns (nc), number of rows (nr), and levels-
back (l). The first two parameters define the number of
nodes in the representation, which are arranged in a grid.
The levels-back parameter determines which nodes from
previous columns can act as an input to the current node. If
levels-back is set to 1, then only the nodes from the previous
column can be used as inputs for the current node. Setting
levels-back to nc allows for the current node to connect
to any of the nodes in the previous columns. It is often
suggested to use a large number of columns and only one
row, with levels-back set to the number of columns. For each
node it is required to define which function it represents
and which nodes act as its input. Since each node must be
able to represent any of the functions, the number of inputs
which is equal to the number of inputs of the function with
the largest number of operands. If the node represents a
function with a smaller number of operands, the extra inputs
are ignored. The inputs of a node are denoted with integer
numbers, which represent the indices of the nodes that act
as the input. If there are ni terminal nodes, then the indices
[0, ni− 1 > are used to denote terminal nodes, whereas the
indices [ni, ni + nc ∗ nr > are used to denote outputs of
the nodes in the grid. The outputs are encoded as additional
numbers in the genotype, that represent the indices of nodes
whose output will be used as the program output.

GE [64] also represents the solution as a linear array of
numbers. In order to decode this array of numbers into a
meaningful expression, a predefined grammar is used. The
grammar is defined with the tuple < T,N, P, S >, where T
denotes the terminal set, N the non-terminal set, P the set of
production rules, and S the start symbol from N . The goal
is to generate an expression which consists only of terminal
symbols. In order to do so, production rules are usually
applied in a way that they replace one non-terminal symbol
with one or more terminal and/or non-terminal symbols.
Non-terminal symbols in the expression are replaced from
left to right by using production rules, until there are
no more non-terminal symbols in the expression. Since
for each non-terminal symbol several production rules can
be defined, the integer number determines which of the
available production rules will be used. The benefits of this
representation are that the genotype is quite simple, and that
there is no need to define new operators for this representa-
tion, but rather operators for the integer representation can
be reused.

The stack representation [65] of solutions is defined by
three parameters: the function set, terminal set and the
maximum individual size. The terminal and function set are
the same as in the tree representation. They contain all of
the functions, variables and constants which can compose
an individual. The functions and terminals that compose
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an individual are stored in a linear form. To evaluate the
individual, we need to generate the mathematical expression
that the individual represents. This is done by going through
the elements of the individual. Whenever a terminal is
encountered, it is pushed on to the stack. When a function is
encountered, the size of the stack is compared to the number
of arguments of the function. If the number of terminals
on the stack is greater than or equal to the number of
arguments of the encountered function, the required number
of elements are popped from the stack and the function is
executed. The result obtained by executing the function is
then pushed on to the stack. If the number of elements on the
stack is smaller than the number of arguments, the function
is simply ignored and the evaluation moves on to the next
element in the individual.

Analytic Programming (AP) [66] represents each individ-
ual as a linear array of floating point values from a range that
is defined by the lower bound and upper bound parameters.
A vital component of AP is the general function set (GFS)
which is composed of functions and terminals. The GFS
is also divided into subsets according to the number of
arguments of functions. When decoding an AP individual,
the first step is to transform the floating point values to
discrete indices which represent indices of functions in the
GFS. This is done by transforming the original value to a
value within the range from 0 to the number of primitives
in the GFS. A mathematical expression is then built by
replacing the indices with the functions in GFS at the
corresponding index. The described structure of the general
function set is used to avoid forming invalid mathematical
expressions while replacing indices with elements from the
GFS. When the function that is supposed to replace an index
has more arguments than there are elements remaining to
the end of the individual, a function with less arguments is
chosen. This ensures that there are enough elements after
the function to use as its arguments.

C. GENERATING DRS WITH GP
DRs which will be generated by the previous solution
representations can be divided into two parts, the schedule
generation scheme (SGS) and the priority function (PF).
The SGS defines how the entire schedule is created, and
which job should be scheduled on which machine. In order
to determine which job should be scheduled on which
machine, the SGS uses a priority function which ranks
all job-machine pairs, and then selects the best pair and
schedules the job on the selected machine. The benefit of
such a separation is that a general SGS can be defined
for a wide variety of problems, while the priority function
which fits the concrete problem or optimised criterion can be
selected and used with the SGS. Because of that the SGS is
defined manually, while the PFs will be generated by using
one of the previously described GP methods. Algorithm 1
represents the SGS which is used for creating schedules in
the unrelated machines environment. The intuition behind
this SGS is that every time a job is released or a machine

becomes available, the PF is used to determine the priorities
of scheduling each of the available jobs on each of the
machines, even the ones which are currently executing other
jobs. Based on the calculated priorities the most appropriate
machine for each job is determined, and then all jobs whose
most appropriate machine is available are scheduled in
order of their priorities. By calculating priorities even for
busy machines, it is possible to insert idle times into the
schedule, since this allows for situations where for all jobs
the best machines can be busy, and therefore no job would
be scheduled on other available machines, but rather the
scheduling decision would be postponed to a later moment
in time.

Algorithm 1 Schedule generation scheme used by DRs
generated by GP

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are

available
3: for all available jobs and all machines do
4: Obtain the priority πij of scheduling job j on

machine i
5: end for
6: for all available jobs do
7: Determine the best machine (the one for which

the best value of priority πij is achieved)
8: end for
9: while jobs whose best machine is available exist do

10: Determine the best priority of all such jobs
11: Schedule the job with the best priority on the

corresponding machine
12: end while
13: end while

As previously denoted, the SGS will use a PF to deter-
mine the priority of scheduling a job on a certain machine.
Since it is difficult to design these PFs manually, they will
be generated by the previously defined evolutionary compu-
tation methods. To evolve new PFs it is mandatory to define
elements which will be used for constructing new PFs. Table
1 represents the set of terminal and function nodes which
are used for constructing new DRs. The first nine nodes
in the table represent terminal nodes which provide certain
information about jobs and the current status of the system.
The time variable that is used in the definitions of some
nodes represents the current system time. Additionally, it
needs to be stressed that the dd, SL, and w terminal nodes
are used only when evolving DRs for optimising the due
date related criteria (Twt and Nwt), since the information
that these nodes provide is not meaningful for the other two
optimised criteria. The last five nodes in the table represent
the function nodes which are used by the methods to evolve
expressions. Although many other function nodes can be
used, a previous study demonstrated that for this set of
function nodes GP achieved best results [56].
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TABLE 1: Set of primitive nodes used for designing new DRs

Node name Description

pt processing time of job j on the machine i (pij)
pmin the minimal processing time of job j on all machines: mini(pij)
pavg the average processing time of job j on all machines
PAT patience - the amount of time until the machine with the minimal

processing time for the current job will be available
MR machine ready - the amount of time until the current machine becomes

available
age the time that job j spent in the system: time− rj
dd due date of job j (dj)
SL positive slack of job j: max(dj − pij − time, 0)
wT weight of job j

+ binary addition
− binary subtraction
∗ binary multiplication

/ binary secure division: /(a, b) =
{
1, if |b| < 0.000001

a
b , else

POS POS(a) = max(a, 0)

III. EXPERIMENTAL SETUP

To train and test the PFs, two independent problem sets will
be used. Both sets will consist of 60 problem instances, each
containing between 3 and 10 machines, and between 10 and
100 jobs. The total fitness of an individual is calculated as
the sum of fitness values for each instance in the problem
set. Since problems of different sizes will have different
values for certain criteria, all fitness values were normalised
in order to remove the dependency on the size of the
problem instance. Additional details about the generation
process of the problem sets can be found in [56].

Aside from defining the problem instances, it is also
required to obtain optimal parameters for each of the
methods, since the quality of the obtained solutions will
depend heavily upon the parameters which were used for
their generation. Therefore, for each of the previous methods
the parameters were optimised for the Twt criterion. They
were optimised in a way that all parameters were fixed to
certain predefined values that were selected as a rule of
thumb. These values are denoted in Table 2 in the initial
value row. After that, each parameter was tested with several
different values, also denoted in Table 2, while the others
were kept fixed, either to the initial value, or the best found
value after optimisation. For each parameter combination
30 experiments were performed and the parameter value
which obtained the best average value of those 30 execu-
tions was selected. Thirty runs were performed in order to
obtain statistically accurate results. The parameters that were
optimised, the tested values, and the best values determined
after the optimisation procedure are represented in Table
2. For the CGP it was decided to use one row with nr

number of columns, and a levels back value equal to nr.
These parameter values were suggested by the author of

the approach for problems in which an arbitrary directed
graph does not need to be implemented [67]. The smaller
population values for CGP were intentionally tested since
it is usually suggested that CGP is used with smaller
population values. The final parameter values of all methods
are presented in Table 3. These parameter values will later
on be used when optimising the remaining three criteria
as well, since optimising the parameters for each criterion
individually would be too time consuming.

To ensure that the conclusions which are made based on
the obtained results are significant, all experiments were
performed at least 30 times, and the best individual from
each run was saved. Based on these 30 individuals, the min-
imum, median, and maximum values were calculated and
displayed for each experiment. Additionally, to determine
whether certain results are better than others, the Mann-
Whitney statistical test was used to calculate if there is
a statistically significant difference between the different
experiments.

IV. RESULTS
This section will represent the results which were achieved
by the tested methods on the four selected scheduling
criteria. Table 4 represents the results achieved by the
selected evolutionary computation methods, for optimising
four scheduling criteria. Additionally, Figure 1 represents
the results in the form of box plots, to better denote the
distribution of the obtained solutions. From the results it is
immediately evident that no single method achieved the best
results across all four scheduling criteria.

For the Twt criterion the best results were achieved by
GP. Although GEP achieved results which were to a small
extent worse, there was no significant difference between
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TABLE 2: Parameter values used for optimisation

Algorithm Parameter Initial value Tested values Final (optimal) value

GP
Population size 100 100, 200, 500, 1000, 2000 1000
Mutation probability 0.5 0.07, 0.1, 0.2, 0.5 0.3
Tree depth 7 3, 5, 7, 9, 11, 13 5

GEP

Population size 100 100, 200, 500, 1000, 2000 1000
Mutation probability 0.5 0.07, 0.1, 0.2, 0.5 0.3
Number of genes 3 2, 3, 4, 5 3
Head size 10 6, 8, 10, 12, 14 6

CGP
Population size 5 5, 20, 50, 500, 1000 500
Mutation probability 0.3 0.3, 0.5, 0.7, 0.9 0.3
Number of columns 100 100, 300, 500 100

GE
Population size 100 100, 200, 500, 1000, 2000 500
Mutation probability 0.3 0.3, 0.5, 0,7, 0.9 0.7
Genotype size 100 30, 50, 70, 100, 150, 200, 500, 1000 150

Stack
Population size 100 50, 100, 200, 500, 1000, 2000 2000
Mutation probability 0.3 0.3, 0.5, 0,7, 0.9 0.5
Genotype size 50 30, 40, 50, 60, 70, 100, 300 60

AP
Population size 500 50, 100, 200, 500, 1000, 2000 200
Mutation probability 0.3 0.3, 0.5, 0.7, 0.9 0.3
Genotype size 50 10, 30, 50, 70, 100 50

its results and those achieved by GP. However, from the
box plot representation it is visible that GP achieved less
dispersed results than GEP, which makes it slightly more
favourable. The Stack representation also performed slightly
worse than GP and GEP when comparing by the median.
However, it achieved the overall lowest minimal value.
According to the box plot, the results were a bit more
dispersed than GP and GEP, but less than GE or AP. CGP
achieved results which are significantly worse than those
of GP, but there was no significant difference between it
and GEP. AP achieved results which are only better than
CGP. The dispersion of the achieved results, which can
be seen on the box plot, is greater than most other tested
methods. Finally, GE achieved the worst results among all
six methods, which can also be seen from the fact that this
method usually achieved quite dispersed results.

In the case of the Nwt criterion the situation is somewhat
more interesting. For this criterion the best results were
again achieved by GP, GEP and Stack, with GEP achieving
a better median value, while Stack achieved the best overall
minimum and maximum values. However, no significant
difference exists between the results of these methods.
CGP, GE and AP achieved results which were significantly
inferior to those of the other two methods, however, there
was no significant difference in the results of CGP and GE,
and CGP and AP. On the other hand, the results for AP
were significantly better than the results achieved by GE.

For the Ft criterion the best results were obtained by
Stack, GEP and CGP. The statistical tests showed that there

was no significant difference between the results of those
three methods. For this criterion Stack and GEP achieved
results which were even significantly better than those
of GP. Unfortunately, GE and AP achieved results which
were significantly worse than any of the previous three
methods. GE achieved results which were dispersed, and
many evolved DRs performed poorly. However, AP achieved
the least dispersed results but all of them performed poorly.
Unfortunately, it is difficult to determine the reason why
this would happen for this criterion. One possibility is
that the chosen individual sizes for these two methods
were inappropriate for this criterion, and that with another
individual size better performance could be achieved.

Finally, for the Cmax criterion it is the most difficult
to determine which of the tested methods achieved the
best results. GEP achieved the best overall median value.
However, both CGP and GE were able to evolve a DR
which performed better than all the rules generated by GEP.
Although GP also achieved a better median value than both
CGP and GE, the best DR found by GP was inferior to the
best found DRs by the other three methods. The statistical
tests show that GP achieved significantly worse results than
GEP, whereas between the results achieved by GEP and
CGP there was no statistically significant difference. Both
AP and Stack achieved significantly worse results than all
other tested methods for this criterion and their results were
less dispersed than they were for other methods.

Apart from observing the performance of the different
methods, it is also interesting to analyse the size of the
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TABLE 3: Final parameter values

GP GEP CGP GE Stack AP

Population size 1000 1000 500 500 2000 200
Stopping criterion 80 000 function evaluations

Selection Steady state tournament selection of size three Differential
Evolution

Initialisation Ramped
half-and-half Random Random Random Random Random

Mutation probability 0.3 0.3 0.3 0.7 0.5 0.3

Expression size Tree depth 5 3 genes and
head size 6

100 columns
and one row,
with levels

back equal to
100

150 60 50

Crossover operators

Subtree,
uniform,
context-

preserving,
size-fair

One point
crossover

Gate one
point, gate

random, gate
uniform, one

point,
random,
uniform

Uniform Two point
crossover

Simple arithmetic,
single arithmetic,

average, BGA,
BLX, BLX-Alpha,
BLX-Alpha-Beta,

discrete, flat,
heuristic, local, one
point, random, SBX

Mutation operators

Subtree,
Gauss, hoist,

node
complement,
nodereplace-

ment,
permutation,

shrink

Replacement
mutation

One point,
one gate Simple Node

replacement Simple

Transposition operators - IS, RIS, gene
transposition - - - -

TABLE 4: Results of the various GP methods on four scheduling criteria

Twt Nwt Ft Cmax

min med max min med max min med max min med max

GP 12.96 13.60 14.62 6.384 7.005 7.939 154.0 155.0 158.6 38.02 38.26 38.68
GEP 13.06 13.68 15.14 6.440 6.925 7.553 153.5 154.8 158.1 37.95 38.22 38.73
CGP 13.38 13.81 15.42 6.609 7.225 7.669 153.7 154.9 158.6 37.88 38.27 38.71
GE 13.41 14.37 19.99 6.653 7.349 7.931 154.8 159.4 171.5 37.86 38.36 40.87
Stack 12.85 13.78 17.01 6.374 7.003 7.476 153.7 154.5 158.2 38.39 38.59 38.86
AP 13.15 14.13 17.11 6.493 7.210 7.546 157.8 158.8 169.1 38.51 38.63 39.48
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(a) Results for the Twt criterion
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(b) Results for the Nwt criterion

GP GEP CGP GE NN Stack AP

155

160

165

170

175

F
t

(c) Results for the Ft criterion

GP GEP CGP GE NN Stack AP

38

39

40

41

42

C
m

a
x

(d) Results for the Cmax criterion

FIGURE 1: Box plot representation of results for the different GP representations

decoded expressions of the evolved PFs. Table 5 outlines
the average sizes of PFs generated for the four scheduling
criteria. The first thing which can be noticed is that the dif-
ferent methods evolved expressions of substantially different
sizes. GP and AP evolved the largest expressions, usually of
sizes of around 40 elements. GEP, on the other hand, evolved
somewhat simpler expressions, usually of sizes of around 30
elements. Stack evolved expressions which usually consisted
of around 25 elements. The remaining two methods evolved
the smallest expressions, of around 18 nodes. It is evident
that the different methods have a preference to evolve
expressions of different sizes. If the size of the evolved
expressions is also of importance, it might even make
sense to use methods which have a preference to evolve
smaller expressions, like GEP, CGP, and GE, especially
since those methods have even demonstrated to achieve
equal, or even slightly better performance than GP, like
for the Ft and Cmax criteria. The table also demonstrates
that for certain criteria all methods tend to evolve slightly
smaller expressions. Additionally, is is evident that almost
consistently for the Nwt and Cmax criteria, the methods

TABLE 5: Average expression sizes of evolved PFs

Twt Nwt Ft Cmax

GP 40.24 38.48 42.40 38.34
GEP 29.66 29.64 28.74 26.64
CGP 18.77 14.63 18.27 18.03
GE 17.40 11.63 15.6 16.13

Stack 25.90 23.03 26.33 22.33
AP 48.17 45.13 31.60 38.27

generated expressions of average sizes which were for a few
elements smaller than those generated for the Twt and Ft
criteria. These results could possibly mean that for those
two criteria it could be more beneficial to evolve PFs of
smaller sizes.

V. FURTHER ANALYSIS
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TABLE 6: Influence of the tree depth in GP

Tree depth Size Fitness
th. max avg min med max

3 15 13.78 13.42 14.21 15.09
5 63 40.24 12.96 13.60 14.62
7 255 89.70 13.05 13.98 17.35
9 1023 153.6 12.80 14.24 18.20

11 4095 200.5 12.92 14.34 18.68
13 16383 443.8 12.58 14.40 18.34

A. COMPARISON OF DR SIZES FOR DIFFERENT
MAXIMUM INDIVIDUAL SIZES
This section will focus on further analysing how the selected
maximum individual size affects the average size and fitness
of DRs generated by the different evolutionary computation
methods. Therefore, each of the methods will additionally
be tested with several different maximum individual sizes.

Table 6 represents the results obtained for the different
maximum tree depths used with GP. Apart from the aver-
age sizes of the evolved DRs, the table also includes the
theoretical maximum size of an expression for the given
depth. From the table it is evident that with the tree depth
parameter it is quite hard to precisely control the sizes of
the evolved individuals. This can be seen from the fact that
the maximum expression size grows exponentially with the
increase of the tree depth. Naturally, this also has an effect
on the average size of the evolved PFs, which can be seen
to consist of only 13 elements for the smallest tested depth,
while for the largest tested depth the sizes consisted of even
440 elements on average. It is evident that the tree size
grows substantially with the depth of the tree. Therefore, it
can be concluded that with the tree depth parameter it is not
simple to control the sizes of the evolved PFs.

It is also interesting to observe how the different tree
depths influence the quality of the generated DRs. Figure
2 shows the box plot representation of the obtained results.
The smallest tested depth resulted in quite bad results, with
most DRs achieving a similar performance. By using the
tree of depth 5, GP evolved DRs of the best quality, which
can be seen from the fact that for this value GP achieved
the best median value. As the depth is increased further,
the results begin to deteriorate which can be seen from
the increasing median value of the results. Additionally, the
method also achieved more dispersed results as the depth
increased, which is evident from the many outlier values
which were obtained. It is also interesting to note that for
larger depths GP was able to obtain PFs which performed
better than any of the PFs generated when using the tree
depth of size 5. Therefore, by using larger tree depths GP
seems to have a greater possibility of evolving PFs with
the absolute best performance. However, these rules were
usually of quite large sizes, and it would therefore be hard
to interpret them and extract knowledge out of them.

Table 7 represents the influence of the number of genes
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FIGURE 2: Results for different maximum tree depths of
GP

TABLE 7: Influence of the number of genes and head size
in GEP

Number
of genes

Head
size

Size Fitness
th. max avg min med max

2 10 43 30 12.93 13.95 14.76
3 10 65 40.6 13.00 13.75 17.50
4 10 87 53.46 13.15 13.84 15.75
5 10 109 63.22 13.05 13.99 16.52
3 6 41 29.66 13.06 13.68 15.14
3 8 53 35.1 13.27 13.84 14.84
3 12 77 44.7 13.10 13.95 15.92
3 14 89 49.36 12.72 13.90 15.99

and the head size on the average size of the expressions
generated by GEP. In addition to the average expression
size of the evolved PFs, the table also includes the maximum
expression size which can be generated by the given param-
eter value combination. As it can be seen, the parameters
in GEP allow for a much finer control of the size of the
expressions than was the case for GP. GEP usually evolved
expressions of average sizes which were around 60% to 70%
of the maximum expression size that can be evolved for the
given parameter values. For three genes of head size six,
GEP evolved PFs of the smallest average size of around
30 elements. On the other hand, the largest PFs of average
size of around 60 elements were generated when using five
genes of head size 10.

The performance of the PFs which were generated by
using different parameter values for GEP is shown in Figure
3, where the labels denote the number of genes in the
individual (denoted with "g"), and the head size of each gene
(denoted with "h"). Unlike when using GP, this time it can
be observed that the obtained results for the different sizes
were mostly similar. This is expected since the difference in
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FIGURE 3: Box plot representation of results for different
GEP parameter values

sizes between for the various parameter combinations was
not as drastic as when using GP. The best median values
of the results are achieved when using individuals which
consist out of three genes, and smaller head sizes. The
best result by GEP was achieved when using the parameter
combination which leads to the smallest average size of
individuals. It seems that GEP is appropriate for finding
good PFs with a smaller size than those evolved by GP. It
is interesting to observe that in the addition to the size of
the individual, the structure of the individual also plays an
important role. For example, both when using two genes of
head size ten and three genes of head size six, GEP evolved
PFs of the same average size. However, PFs which were
evolved by GEP with three genes of head size six achieved
a better median value. Therefore, although both cases lead
to the same average expression sizes, a better performance
is achieved when using more genes of smaller sizes.

Table 8 represents the effect of the different individual
sizes of CGP on the average sizes of the generated PFs and
their quality. The table shows one quite interesting occur-
rence for CGP, which is that although the maximum size of
the individual increases, the average size of the generated
PFs is increased only slightly. For example, in the case of
the smallest tested individual size, CGP evolved expressions
which consisted of only 14 nodes on the average, while for
the largest individual size CGP generated PFs consisting of
around 24 elements on average. In several occasions CGP
did evolve DRs of quite large sizes, however, these PFs
usually did not achieve a very good result on the test set.
Therefore, it seems that CGP is more focused on evolving
PFs containing a smaller number of elements. The reason
for this could be that the maximum value for the level-
back parameter was used, meaning that CGP will be able
to evolve individuals in which a large portion of the nodes
will simply be skipped and will thus be inactive. This allows

TABLE 8: Influence of different maximum individual sizes
in CGP

Individual size Size Fitness
th. max avg min med max

91 231 − 1 14.27 13.36 14.11 15.81
151 251 − 1 15.13 13.41 14.21 16.07
211 271 − 1 18.27 12.88 14.19 16.93
301 2101 − 1 18.77 13.38 13.81 15.42
451 2151 − 1 19.53 12.92 14.34 17.04
601 2201 − 1 18.23 13.44 14.31 16.74
901 2301 − 1 20.3 13.50 14.18 15.63

1501 2501 − 1 24.43 12.74 14.34 16.52

91 151 211 301 451 601 901 1501
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FIGURE 4: Results for different CGP maximum individual
sizes

CGP to easily evolve PFs of the preferred sizes.
Figure 4 shows the box plot which represents the results

achieved for the different individual sizes when using CGP.
The figure shows that the size of the individuals has a
significant influence on the quality of the results. The
best results were achieved when using individuals of size
301, which would mean that the individual contains 100
nodes, which do not all need to be active. As the size of
the individual decreases and increases, the fitness of the
individuals deteriorates. For smaller individual sizes this
is probably due to the fact that the individuals of smaller
sizes might not be expressive enough, while the too large
individuals are probably not quite suited due to the fact that
the mutation will mostly be performed on inactive parts,
which then does not have any effect on the quality of the
individual. This seems to cause even more problems for
CGP than when using too small individual sizes, since for
larger individual sizes the algorithm usually achieved to a
certain extent worse results than for smaller individual sizes.

Table 9 represents the results for the various individual
sizes of GE. The results from the table denote that GE

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151346, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 9: Results for the various maximum individual
sizes in GE

Individual size Size Fitness
avg min med max

30 7 14.65 19.78 27.36
50 10.5 13.10 15.38 22.69
70 11.37 13.58 15.06 20.16

100 13.83 13.24 15.56 27.36
150 17.4 13.41 14.37 19.99
200 15.13 12.80 14.85 25.14
500 14.63 13.40 14.85 27.36
1000 15.17 13.36 14.95 27.36

is even more biased towards evolving smaller expressions,
which can be seen from the fact that the evolved expressions
are relatively small when compared to the previous three
methods, regardless of the maximum expression size which
was used to evolve the PFs. Therefore, even for larger indi-
vidual sizes, the average PF size will not contain more than
18 elements. However, larger PFs are sometimes generated
for the larger individual sizes, but similarly as for the CGP,
these individuals did not achieve really good results, and
were easily outperformed by smaller PFs.

The performance of the PFs generated by various in-
dividual sizes when using GE are shown in Figure 5.
GE did not achieve results which were competitive with
those of other methods, which can be seen from the fact
that for all individual sizes the method obtained a quite
large median value. Furthermore, GE also obtained quite
dispersed results, which can be seen not only from the
number of outliers which were obtained by the method,
but also from the fact that a great number of evolved PFs
achieved bad results. Using too small individual sizes leads
to the worst performance for GE. For the individual size of
150 elements GE achieved the best median values. As the
size increases the performance of the algorithm deteriorates
once again.

The results for different sizes of the Stack representation
are shown in Table 10. In this case the theoretical maximum
size of an individual is the same as the maximum individual
size. However, it is interesting to see that the average size
of individuals for the smallest tested sizes, 30 and 40, are
about half of the theoretical maximum. This can be expected
since most evolved expressions are going to be invalid,
and therefore major parts of the expression are going to
be discarded while transforming the individual into the PF.
The results show that this happens even more for larger
individual sizes. For example, for the maximum size 300,
the average size of individuals is only around 46.

The performances of the PFs generated by different
individual sizes of the Stack genotype are shown in Figure
6. The box plot shows that the results are somewhat more
dispersed for individual sizes larger than 60. The best results
are achieved when the maximum individual size is set to 60.
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FIGURE 5: Box plot representation of results for different
GE maximum individual sizes

TABLE 10: Results for the various maximum individual
sizes in Stack genotype

Individual size Size Fitness
th. max avg min med max

30 30 16.60 13.25 14.02 14.21
40 40 20.23 13.23 14.02 14.88
50 50 21.77 13.38 13.78 14.61
60 60 25.90 12.85 13.78 17.01
70 70 25.83 13.26 14.13 15.37

100 100 30.73 12.53 14.13 17.19
300 300 46.17 13.23 14.04 15.22

Very similar results are achieved for the size 50, while the
worst results are achieved for the smallest and the biggest
tested sizes.

The results for different sizes of AP individuals are shown
in Table 11. In this case, the theoretical maximum size is
also equal to the set maximum individual size. Since each
individual that is created in AP is of maximal size, most
evolved individuals will end up being the same size. That
explains why the average individual size for most tested
sizes is almost the same as the theoretical maximum. The
biggest difference is seen for individual size 100, where the
average individual size is around 90. Therefore, with this
method, controlling the sizes of evolved individuals is quite
straightforward.

The performances of the PFs generated by different
individual sizes are shown in Figure 7. In this case, the
worst results are achieved for the smallest individual size,
10, while the best are achieved for size 50. However, the
results for all tested sizes except the smallest one are quite
similar and are similarly dispersed. This shows that for
the AP method, increasing the individual size doesn’t have
much of an effect on the quality of the evolved individuals.
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FIGURE 6: Results for different maximum tree depths of
Stack genotype

TABLE 11: Results for the various maximum individual
sizes in AP

Individual size Size Fitness
th.max avg min med max

10 10 10 13.40 15.45 18.68
30 30 28.17 13.55 14.28 19.70
50 50 49.77 13.15 14.13 17.11
70 70 70 13.28 14.57 16.42

100 100 89.53 13.40 14.38 18.01

B. EXAMPLES OF GENERATED DRS
This section will give a short overview of the best PFs
which were obtained by each of the six tested methods.
It should be mentioned that the rules represented in this
section do not represent the very best rules obtained by each
of the methods, since the best obtained rules were quite
often of large sizes, but rather the best PFs which were
obtained for the parameter combinations denoted in Table
3. Nevertheless, since for those parameters all the methods
achieved the best median values, the presented PFs should
still give a good notion on the quality of the PFs which can
be evolved by each of the methods.

Table 12 represents the PFs evolved by the four tested
methods. The PF evolved by Stack is the best performing
PF in the table. The size of that PF is 26 which is half
of the size of the next best PF in the table, which makes
it easier to interpret. The PF evolved by GP achieved the
second best result, but was also the largest PF among the
ones presented in the table. By observing the PF generated
by GP, it can be seen that it contains several elements
which do not have an effect on the value of the priority.
For example, it can be seen that the PF applies the pos
function on several terminal nodes, which by themselves can
not be negative. Therefore, even by removing this function
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FIGURE 7: Results for different maximum tree depths of
AP genotype

the values determined by the PF would not change, however,
the PF would be slightly simpler. Additionally, it also often
happens that the expression includes subexpressions which
in most cases do not have a large influence on the priority.
An example of such a subexpression in this PF would be
pmin−w, where w is usually quite smaller than the value of
the pmin terminal. Therefore, even if this expression were
replaced by only pmin, it would probably not have a large
influence on the fitness of the PF. Such situations are exactly
one of the problems with the tree representation, since it
tends to increase in size, without leading to a significant
improvement of the fitness of the PF.

The PF generated by GEP is shown to achieve a slightly
worse result than that of GP, but is almost two times smaller.
The PF shows that for the exception of one unnecessary pos
function, it does not really contain any elements which can
immediately be classified as redundant. Therefore, it seems
that GEP is able to control the size of its expressions to a
much greater extent, and introduces much less noise into the
generated expressions when compared to GP. The expres-
sion generated by CGP is of similar size to that of GEP, but
it performs to a certain extent worse than the PF generate by
GEP. It can be seen from the PF generated by CGP that it
usually does not contain redundant subexpressions, since it
contains an unnecessary pos function in only one occasion.
Therefore, CGP also seems to be good for creating PFs of
smaller sizes. The PF generated by GE achieves the worst
result among the six tested methods, but it also evolved
the PF with the smallest size. This one consisted out of a
large number of subexpressions which in the end did not
have any effect on the priority value. This can be seen from
the several redundant pos functions applied to the SL and
w terminals, but also from the fact that it generated some
expressions like pmin−pmin which in the end do not have
any effect on the calculation of the value of the PF. Finally,
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TABLE 12: PFs generated by the various methods

Method Fitness Size PF

GP 12.96 52
pmin−w

w
age

− pos(pavg) ∗ (pt+MR) + pos(SL) ∗ dd
MR + pmin∗SL

pavg−SL + (ddpt + pavg +

dd) ∗ (pmin− w) + pos(SL) ∗ (SL+ pavg) + dd
w

GEP 13.06 27 pos
(
pos

(
pmin
w

)
−MR+ pavg

)
− pt+

pmin+ SL
MR
SL

MR + pmin+ SL+ SL

CGP 13.38 29
(
pmin
w + PAT −MR+ SL− pt

)
∗ pavg + pos(PAT −MR+ SL− pt) ∗

pos(MR) + pmin
w

GE 13.41 20 dd− pt+MR− pos(w)− pmin+ pmin+ pos(pos(pos(SL)))− pos(w)

Stack 12.85 26 MR+ dd+ dd+ pt+ dd+MR

PAT
+

pos(pmin)

w
+ dd− (pt+MR) + SL

AP 13.15 50

pos((pos(

w
PAT

dd ∗ dd ∗ dd
dd ∗ dd ∗ dd

dd ∗ dd ∗ dd ∗ dd ∗ dd ∗ dd
PAT
w

) ∗

w

pos(w)

MR
) + pmin+ SL)

pt
∗ pmin

w

the PF generated by AP is the second largest PF in the table.
However, its performance is not as good as that of the largest
PF. This comes from the fact that large parts of the evolved

expression are redundant. For example,
dd ∗ dd ∗ dd
dd ∗ dd ∗ dd

could
be reduced to just 1 which would reduce the expression
size by 10 elements. Thus, out of all six methods, GE and
AP seem to have the most problems with such redundant
subexpressions.

VI. CONCLUSION
The objective of this paper was to compare six evolutionary
computation methods which can be used to generate new
DRs for the unrelated machines scheduling problem. Each
of the tested methods uses a different representation for the
expressions which will act as the PFs, and offers different
benefits. The tested methods are used for the generation
of new DRs for optimising different scheduling criteria.
Additionally, for each of the tested methods an analysis was
performed on how different maximum individual sizes affect
the performance of the methods, as well as the average size
of the PFs they generate.

The results which were presented in this paper suggest
that neither of the methods achieved the best results across
all of the tested criteria. With the exception of GE and
AP, which achieved quite bad results for most of the
criteria, the remaining four methods achieved mostly similar
results, with their performance depending largely on the
criterion which was optimised. GP and Stack have proven
to be the most appropriate when optimising criteria which
require more complex PFs, while GEP and CGP were
more appropriate for generating DRs for criteria where
simpler PFs were preferred. Nevertheless, the four methods
achieve mostly similar results for most of the tested criteria,

therefore there should not be a significant difference in
the results regardless of which of the four methods is
used. As for the sizes of the generated PFs, CGP and GE
generated expressions of the smallest average size out of
all the tested methods. For all methods it was noticed that
the generated expressions contain redundant parts. However,
PFs generated with CGP and Stack contained the least
amount of redundant subexpressions, thus outlining that
those methods might be the most appropriate to deal with
bloat and redundant subexpressions in PFs.

In future work it is planned to focus more on generating
simpler and more interpretable PFs. First of all it is planned
to simply analyse the generated DRs to better understand
which parts of PFs are redundant and which parts are the
most informative. By using that information, the evolution-
ary algorithms will be enhanced with different methods
which will try to detect redundant parts of PFs during the
evolution process, and automatically remove those parts
from the expression. This should lead to the generation
of simpler and more interpretable PFs. Another research
direction would be to use interval arithmetic to restrict the
search to only those DRs which are valid on the entire
domain. Additionally, further research will also focus on
testing different bloat control methods to further reduce the
sizes of the generated PFs.
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Jakobović. Evolving priority rules for resource constrained project
scheduling problem with genetic programming. Future Generation Com-
puter Systems, 86:211 – 221, 2018.

[32] Francisco J. Gil-Gala, Carlos Mencía, María R. Sierra, and Ramiro Varela.
Evolving priority rules for on-line scheduling of jobs on a single machine
with variable capacity over time. Applied Soft Computing, 85:105782,
2019.

[33] Francisco J. Gil-Gala, María R. Sierra, Carlos Mencía, and Ramiro
Varela. Genetic programming with local search to evolve priority rules
for scheduling jobs on a machine with time-varying capacity. Swarm and
Evolutionary Computation, 66:100944, 2021.

[34] John Park, Su Nguyen, Mengjie Zhang, and Mark Johnston. Evolving
ensembles of dispatching rules using genetic programming for job shop
scheduling. In Penousal Machado, Malcolm I. Heywood, James McDer-
mott, Mauro Castelli, Pablo García-Sánchez, Paolo Burelli, Sebastian Risi,
and Kevin Sim, editors, Genetic Programming: 18th European Conference,
EuroGP 2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings,
pages 92–104. Springer International Publishing, Cham, 2015.

[35] Emma Hart and Kevin Sim. A Hyper-Heuristic Ensemble Method for
Static Job-Shop Scheduling. Evolutionary Computation, 24(4):609–635,
December 2016.
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generation schemes for designing dispatching rules with genetic program-
ming in the unrelated machines environment. Applied Soft Computing,
96:106637, 2020.
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DOMAGOJ JAKOBOVIć is a Full professor at
Faculty of Electrical Engineering and Computing,
University of Zagreb. He received B.S. degree
in December 1996. and MS degree in December
2001. in Electrical Engineering. Since April 1997.
he is a member of the research and teaching
staff at the Department of Electronics, Micro-
electronics, Computer and Intelligent Systems of
Faculty of Electrical Engineering and Computing,
University of Zagreb. He received Ph.D. degree

in December 2005 on the subject of generating scheduling heuristics with
genetic programming.

VOLUME 4, 2016 17


