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1. Introduction

Over the last fifty years, a lot of research has been done in developing technologies

for DNA and RNA sequencing, resulting in three well-known sequencing generations.

The focus of the first generation was the accuracy of the fragments, which resulted in

accurate but short fragments. The second generation has increased data availability by

introducing cheap and fast sequencing. Long error-prone fragments produced by third-

generation sequencing technologies have significantly accelerated studies on genomes,

but a high error rate still limits many downstream applications.

In 2019, Pacific Bioscience introduced highly accurate long-read sequencing (HiFi

sequencing), a paradigm that combines the best concepts from traditional short and

long error-prone reads technologies. The HiFi reads are characterized by lengths

between 10 and 25 kb on average and greater than 99.5% base-level resolution. These

accurate long reads provide valuable information that can be used to improve many

genome studies. A prerequisite for all downstream analysis is to assemble fragments

produced by sequencing technologies. Tools that can map reads to the existing

reference genome (find the segment on the reference genome that is most similar to

the fragment) are essential for that step.

Ever since Pacific Bioscience announced these new accurate reads, there has been

a growing interest in finding and developing mapping algorithms adjusted to HiFi

reads. The hypothesis of this article is that characteristics of HiFi data enable utilizing

approaches that are less sensitive to errors and consequently reduce time consumption

while increasing the accuracy of results.

Several mapping and aligning tools have already been developed and adjusted

for HiFi data. Minimap2 (Li, 2018) has recently been extended with a preset

for PacBio HiFi/CCS genomic fragments, enabling optimal performance and high

accuracy. Another popular tool, developed on top of the Minimap2 codebase,

is Winnowmap. Winnowmap (Jain et al., 2020) improves mapping accuracy by

optimizing the algorithm to perform better on highly repetitive sequences.

The described tools are based on minimizers and use the standard seed-chain-align
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procedure. Roberts et al. proposed the original idea behind minimizers in 2004, and

ever since then, they have been used by most string comparison tools in bioinformatics.

Simply put, minimizers are short substrings of a larger string. Algorithms for

minimizer sampling often guarantee that a similar set of minimizers will be chosen

on similar strings. Representing the reference genome with a set of minimizers

reduces storage requirements while enabling fast search by storing these minimizers

in hash tables. In the seed-chain-align procedure, seeds are minimizers extracted from

fragments with the same minimizer sampling algorithm used in sampling minimizers

from the reference genome. A key step in fragment mapping by this method is to find

exact matches between the minimizers taken from the fragments and the minimizers

from the reference genome. These exact matches are found efficiently by searching

the beforementioned hash table. Exact matches represent anchors. Chaining multiple

anchors approximates the mapping of the whole fragment. The chaining step is often

conducted by dynamic programming inspired by the longest increasing subsequence

algorithm.

The drawback of the described approaches are many false-positive anchors, causing

the chaining time to be dominant in the execution (Babojelić, 2020). The false-positive

anchors often occur due to tandem repeats and repetitive regions in the reference

genome. Tandem repeats are short patterns of nucleotides that are repeated multiple

times in the reference. The repetitive regions are long near-identical sequences of

nucleotides that appear numerous times. Usually, to improve the time consumption,

Minimap2 discards minimizers that occur too often, causing poor mapping quality

within repetitions. The second improvement suggested in the paper Overlapping

Single-Molecule High-Fidelity Sequencing Data (Babojelić, 2020) is to extract a

smaller number of minimizers in order to improve the execution time, which results in

losing sensitivity.

In this article, we will present the novel algorithm for mapping fragments

against reference genome based on suffix arrays. Utilizing suffix arrays enables the

development of different sampling algorithms that can capture critical information

and preserve sensitivity while reducing the number of samples. This paper focuses

on mapping fragments against the reference sequence, but we will propose methods

to adjust the algorithm for finding overlaps between fragments. We will analyze

the performance and accuracy of the proposed algorithm on both simulated and real

datasets.
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2. Data

2.1. Data formats

FASTA and FASTQ formats are de-facto standards for storing nucleotide and peptide

sequences. The fundamental building units of biological sequences, amino acids, are

represented as single-letter codes in these text-based formats.

There are two types of lines in FASTA format. The description line regularly

contains the sequence name and often includes additional information like a sequence

identifier. The lines of sequence data must follow the description line. Symbol ’>’

at the beginning of the description line allows distinguishing between line types.

The lines in FASTA format are generally shorter than 80 characters, which is also

recommended by the norm.

FASTQ is an extended FASTA format that contains the corresponding quality

scores in addition to the sequence and its description (Cock et al., 2010). The qualities,

as well as amino acids, are stored as single-character codes. There are four different

types of lines in FASTQ format. The first line, which can be recognized by the

’@’ symbol at the beginning, contains the nonoptional sequence identifier and the

optional description. The line with sequence data is the second line. The third

line, beginning with the ’+’ character, may contain supplementary information like

the sequence identifier and description. The fourth line stores quality scores for the

sequence represented by the second line. The quality score can take on a value between

the lowest and highest quality. According to Phred quality, the lowest quality is 33 (’!’

in ASCII), and the highest quality is 126 (’∼’ in ASCII).

The quality score describes a probability that the corresponding amino acid is

incorrectly sequenced. The standard equation which associates error probability and

quality is Q = −10 log10 p.

PAF format, an output of many mapping tools, is a simple text format describing

the approximate mapping positions between sequences. Each line represents one

alignment or overlap. The line in PAF format is TAB-delimited and contains the fields
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described in Table 2.1.

Table (2.1) PAF format description, Taken from Minimap2 manual page.

Column Type Description

1 string Query sequence name

2 int Query sequence length

3 int Query start (0-based; BED-like; closed)

4 int Query end (0-based; BED-like; open)

5 char Relative strand: "+" or "-"

6 string Target sequence name

7 int Target sequence length

8 int Target start on original strand (0-based)

9 int Target end on original strand (0-based)

10 int Number of residue matches

11 int Alignment block length

12 int Mapping quality (0-255; 255 for missing)

2.2. PacBio HiFi Data

Single Molecule, Real-Time (SMRT) Sequencing is Pacific Bioscience technology that

enables long-read sequencing. PacBio third-generation long reads are produced by one

pass of the enzyme around the circular template. HiFi reads creation require multiple

passes of enzyme around the circular template in order to achieve high accuracy.

Enzyme passes generate many subreads, and the consensus over them is called a HiFi

read. The following datasets, provided by Pacific Bioscience, are used in this paper.

Table (2.2) The PacBio HiFi reads

Dataset Reference size Subreads

Human chromosome 19 61707364 141750

Human chromosome 13 113566686 241583
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2.3. Simulated Data

When developing new bioinformatics tools, it is essential to experiment with various

methods for different algorithm components. The algorithm should be evaluated from

several points to assess how the included method affects the solution of a particular

problem. After evaluation, it is easy to decide whether to incorporate the considered

methods in the final algorithm.

Additionally, when developing new algorithms, it is crucial to compare their

performance with existing solutions. It is critical to consider the execution time and

the accuracy of the obtained results when comparing performance between different

tools. However, it is difficult to use real data in the evaluation process since the error

and alignment information are unavailable. Therefore, it is required to simulate the

data to know the ground truth and enable the evaluation process.

Since there is no available simulator adjusted to HiFi data, we have developed

a simple simulator. The developed simulator can perform two different functions -

sequence generation and fragment generation.

Optimizing mapping tools to perform well in practice is challenging because of

the uneven distribution of minimizers in most genomes. Genomes contain repeats

that cause some minimizers to appear too often and carry very little information for

the mapping process. Minimap2 discards the most frequent minimizers to decrease

time complexity. A consequence is that the accuracy in repetitive areas of genomes is

reduced too. However, tools that map fragments against reference must work correctly

regardless of the proportion of repetitions in the reference genome.

Sequence generation supported by the developed simulator helps optimize the

algorithm to perform well in repetitive areas since it can create artificial repeats.

Simple control of the proportion of repetitive regions and their positions allows simple

monitoring of the tool execution in areas of interest. Different options offered by the

sequence simulator are shown below.

usage: ./Refgen [options ...] <ref_size> [instructions ..]

# default output is stdout

<ref_size>

the size of the reference

instructions

instructions for repetitive segments creation

list of (index seed) values
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options:

-r, --repetitive-counter <int>

default: 0

the number of instructions

-s, --seed <int>

random seed for reference generation

-p, --probability <double>

the probability that the base will be mutated,

to make repetitive regions distinguishable

-n, --name <string>

reference name

-h, --help

prints the usage

The following command will create the sequence with two equal segments, first

runs from index 0 to index 10 exclusively, and second from index 20 to index 30.

./Refgen -r 4 -p 0 50 0 5 10 17 20 5 30 58

The result of executing the previous command is the following sequence.

>ARTIFICIAL_REF

AGTCGAACCGAATTAGAGGTAGTCGAACCGAGTGTGGCCAAAAAAGTCAT

Two simulators for PacBio data have inspired the implementation of the fragment

simulator. PBSIM2 (Ono et al., 2020) simulate the non-uniformity of quality scores

with a generative model for quality scores based on a hidden Markov model. PBSIM2

also implements another type of simulation called sampling-based simulation. The

idea behind sampling simulation is to randomly choose fragments from the real dataset

and use their characteristics to simulate new fragments. In the simulation, the new

fragment is extracted from the reference, and errors are introduced according to the

quality scores of the chosen fragment. Although interesting for its simplicity, the

disadvantage of this approach is that it ignores the fact that there are low-quality

regions on the reference. The second simulator that has influenced the development

of our reads simulation procedure is PaSS (Zhang et al., 2019). The approach that

PaSS implements is based on learning patterns from real sequencing data. First, to

learn error distribution, PaSS aligns provided reads to the reference genome. PaSS
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learns the probability for different error types considering the context. The context is

considered by counting for all possible substrings (substrings are usually small in size)

the number of occurrences of different errors types inside the given substring.

Our reads simulator uniformly extracts nucleotide sequences from a given

reference. The sequencing errors (substitutions, insertions, and deletions) are

simulated according to one of two implemented error models. The first,

straightforward model defines the sequencing error as uniform distribution, meaning

that the error probability is equal for every position of every generated read.

The second model involves preprocessing to learn quality distribution. The quality

is learned for each nucleotide throughout the reference. Preprocessing requires

subreads and their approximate alignment to the given reference. Needleman-Wunsch

algorithm is employed for each subread to calculate the number of matched nucleotides

between the reference genome and subread. If the ratio of matched nucleotides and

the alignment length is lesser than the predefined threshold, the subread is discarded.

Otherwise, the optimal alignment is used to update the quality distribution. For each

position in reference, the quality is calculated as the average of qualities obtained as

follows:

1. Insertion has occurred if the nucleotide from the subread has no counterpart in

the reference. The quality of the previous position in nucleotide is updated with

the lowest possible quality.

2. The deletion has occurred if the nucleotide from reference has no counterpart in

the subread. The quality of the current position in reference is updated with the

lowest possible quality.

3. If the nucleotides from reference and subread are equal for the given position,

the quality is updated with the corresponding quality in the subread.

4. If the nucleotides are not matched, the quality is updated with the lowest possible

quality.

If the position in reference is not covered with any subread and consequently has

no quality information, the quality for that position is the highest possible.

The probability of the error is calculated from the quality, based on the Phred

quality definition.

p = 10
−Q

10 (2.1)

Each error type occurs with equal probability. Deletion and substitution work

as expected. In the case of insertion, half of the inserted nucleotides are randomly

7



chosen. The first next nucleotide in the reference determines the other half of inserted

nucleotides, as explained in the PBSIM2 paper (Ono et al., 2020). The options for

simulating reads are shown below.

usage: ./Readsgen [options ...] <reference_path>

[<reads_path>, <paf_path>]

# default output is stdout

<reference_path>

path to the reference

<subreads_path>

path to the subreads of the reference,

required when model is set

<alignment_path>

path to the alignements paf file

options:

-m, --model

error model will be trained from reads and alignements

-l, --read_length <int>

default: 25000

the length of the reads

-n, --num_reads <int>

default: 10000

the number of fragments to be generated

-c, --complement

default: 0.5

proportion of reverse complement

-p, --error_probability <double>

default: 0.01

probability of base sequencing error

-s, --seed <int>

random seed

-h, --help

prints the usage

The following command will generate 5 subreads of size 10 from the previously
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simulated reference. The probability of the sequencing error is 0.1. The probability

that the simulated subread is reverse complement equals 0.5.

./Readsgen -l 10 -n 5 -c 0.5 -p 0.1 reference.fasta

The result of the previous command is shown below.

@ARTIFICIAL_REF_0_TARGET_SIZE_10_STRAIN_+_POSITION_000000001

GGTCCGAAGG

+

~!~~!~~~!!

@ARTIFICIAL_REF_1_TARGET_SIZE_10_STRAIN_-_POSITION_000000035

TTTTTTGGCC

+

~~~~~~~~~~

@ARTIFICIAL_REF_2_TARGET_SIZE_10_STRAIN_-_POSITION_000000032

TTTGGCCACA

+

~~~~~~~~~~

@ARTIFICIAL_REF_3_TARGET_SIZE_10_STRAIN_+_POSITION_000000037

CCAAAAAAGT

+

~~~~~~~~~~

@ARTIFICIAL_REF_4_TARGET_SIZE_10_STRAIN_+_POSITION_000000024

CAACCGAGTG

+

!~~~~~~~~~
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3. Methods

Mapping assembly is a standard technique for reconstructing the original sequence

from fragments produced by sequencing technologies when the reference genome

exists. Tools that map fragments to the existing reference are crucial for this assembly

type. Since sequencing technologies do not produce completely accurate fragments,

these tools must perform a non-exact matching algorithm to map fragments to the

reference.

A possible definition of the approximate string matching problem is to find one

substring of the reference that has the smallest edit distance to the given fragment

among all substrings of the reference. The edit distance is defined as the smallest

number of primitive operations required to match the fragment and reference exactly.

Primitive operations are usually deletion, substitution, and insertion.

An efficient solution to the approximate string matching problem uses dynamic

programming (DP). The Smith-Waterman algorithm is a DP approach that aims to

divide the matching problem into the smallest subproblems and use their solutions

to find the optimal local alignment between fragment and reference. The idea is to

calculate the minimum edit distance between the first i characters in the fragment and

any substring that ends at position j in the reference for each pair of ending indices.

When calculating the minimum value for the pair (i, j), the previous values are used.

The time complexity of this approach is O(np), where n is the reference size, and p is

the fragment size.

The O(np) time complexity makes the before-mentioned approaches useless in

bioinformatics. In recent years, the most popular algorithms for approximate string

matching are those based on reducing the number of possible approximate matches by

extracting substrings1 from the fragment and matching these substrings to the reference

with an exact matching algorithm. Although the most common choice for an algorithm

that performs exact matching between the fragment and reference substrings is a hash-

based algorithm, the method we will describe uses a suffix array.

1In bioinformatics, these substrings are usually called k-mers.
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3.1. Overview of k-mer based methods

The proposed method is inspired by several rapid approximate sequence comparison

methods that have been developed over the past few years. These methods heavily

rely on k-mers and k-mer hash functions to provide state-of-the-art performance.

Following, we will give an overview of these methods and describe how they

influenced the development of the proposed algorithm.

One of the first such methods was BLAST (Altschul et al., 1990). BLAST utilizes

the k-mer hash function to find potential matches, which are later expanded by dynamic

programming to produce the final mapping. The algorithm first iterates through the

reference and stores hash values for k-mers at positions 1, w + 1, 2w + 1... in the hash

table. Potential matches are found by calculating the hash values for all k-mers in the

fragment and searching the hash table for exact matches.

Minimap2 (Li, 2018) uses minimizers instead of sequentially sampled k-mers.

Minimizers are defined as the smallest k-mers in a window containing a predefined

number of consecutive k-mers of the sequence. A formal definition of minimizers and

the sampling algorithm can be found in the paper "Reducing storage requirements for

biological sequence comparison" (Roberts et al., 2004). Minimizers are collected in

linear time regarding the sequence length and indexed using the hash table. The key in

the hash table is the minimizer hash value. The corresponding value is a set of positions

in the sequence. Given the fragment sequence and minimizers indexed using the hash

table, Minimap2 finds exact matches between minimizers sampled from the fragment

and minimizers stored in the hash table by comparing their hash values. These exact

matches are called anchors according to the Minimap2 paper, and we will use that

notion throughout the paper. An anchor is defined as 3-tuple (x, y, w), indicating that

the k-mer of length w at position x in the reference is equal to k-mer of the same size

w at position y in the fragment. The obtained anchors are chained using the chaining

procedure, inspired by the longest increasing subsequence.

The described tools have considerably influenced the development of HiFiMapper,

the tool for mapping fragments against reference based on a suffix array. Like these

k-mer based methods, our tool samples substrings from the given fragment in order

to find anchors. We have implemented several sampling algorithms, and one of them

is equal to the procedure BLAST uses to extract k-mers from reference. Anchors

obtained by finding exact matches using the suffix array are chained with the procedure

introduced by Minimap2. The main difference is that HiFiMapper creates a suffix

array to enable fast matching instead of storing the reduced k-mer representation of
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the reference sequence.

3.2. Overview of the proposed method

In this section, we will give an overview the basic steps of the proposed method and the

motivation behind them. We will briefly describe each component and later, through

the chapter, provide the reader with detailed explanations and implementation choices

that have been made.

The essential part of the proposed method is the suffix array, a space-efficient

data structure that enables quickly locating all occurrences of the pattern2 within the

reference. A suffix array stores all suffixes of the reference sequence in sorted order.

Suffixes are usually stored as starting positions of suffixes in the reference sequence,

making memory requirements insignificant.

Finding an occurrence of the pattern within the reference corresponds to finding

a suffix whose prefix is equal to that pattern. Since suffix arrays stores suffixes in

lexicographical order, all suffixes beginning with the given pattern can be easily found

with two binary searches.

Given two sets of sequences, target3 and queries4, the proposed algorithm first

builds suffix array for the target sequence. Although this algorithm is primarily

designed for mapping fragments to a reference, it can be easily extended for mapping to

multiple references (or finding overlaps between multiple fragments). Multiple targets

can be joined with a special character that is not included in any sequence, after which

a suffix array can be constructed for the resulting string.

After preprocessing is done and fast pattern matching is enabled, the algorithm

samples the given queries. Using the suffix array as a method for exact matching allows

us the implementation of various sampling strategies. Since the suffix array stores the

complete reference, a sample could be any substring from the query. The first and

simplest sampling method is to choose substrings randomly. The second sampling

algorithm guarantees high query coverage by sampling consecutive substrings like

BLAST. The third method, called informed sampling, extracts the samples that are

likely to determine the correct query position in the reference. An additional structure,

the longest common prefix, must be constructed to allow the third sampling method.

In addition to allowing flexibility in query sampling, the use of the suffix array

2The pattern is a string whose occurrence is searced in the suffix array.
3A target is a reference to which fragments are mapped.
4Queries are fragments that are mapped.
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also enables much larger samples than the hash approaches. Approaches based on

hash functions require relatively small samples because the larger the minimizer, the

more likely it is that the sequencing error is involved. Also, an increase in the size of

minimizers needs to be accompanied by an increase in the hash table size to remedy

the collision probability. Suppose the minimizer contains at least one wrong nucleotide

base. In that case, the minimizer cannot be correctly matched using hash values

because two substrings must be completely equal to have equal hash values (if we have

a perfect hash function). On the other hand, using suffix arrays allows matching only a

prefix of the sample, meaning that we can still avoid a false negative if the sequencing

error occurs inside the sample. Using large samples can significantly reduce search

space, and therefore runtime. If the patterns are long enough, they can be spread over

small repetitive parts such as tandem repeats.

Matching only a prefix of the pattern provides resistance to sequencing errors.

However, using suffix arrays also provides another way to avoid sequencing errors.

When searching the suffix array, it is possible to ignore nucleotide bases that are

considered to be of poor quality. However, it is impossible to avoid deletion and

insertion by using quality scores.

Although the described sampling strategies and the searching of the suffix array

reduce the number of false-positive and false-negative matches, the obtained matches

can still be scattered due to the presence of larger repetitions. So, in the end, it is

necessary to chain the anchors in order to find the best alignment.

To summarize, we will outline the described basic steps:

1. Construct a suffix array (and longest common prefix array if necessary) for the

given target.

2. Sample each query with one of the following algorithms:

(a) Random sampling.

(b) A sampling of consecutive substrings.

(c) Informed sampling.

3. Search the suffix array to find anchors.

4. Chain the obtained anchors to find the best alignments.

In the following sections, we will explain each of the previous steps in more detail.
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3.3. Suffix array

Suffix arrays are one of the most used data structures in string processing. They have

achieved popularity in practice because of their simplicity and space compactivity

when compared to suffix trees.

For some string S of length n, the i−th suffix Si of S is the substring S[i, ..., n−1].

A suffix array is an array of indices corresponding to lexicographically sorted starting

positions of all suffixes.

As an example, we will look at the string S = AACGAACGT$. The string usually

ends with a unique character $, called sentinel. The sentinel is defined to be the

lexicographically smallest character.

All suffixes of the given string are listed below.

0. AACGAACGT$

1. ACGAACGT$

2. CGAACGT$

3. GAACGT$

4. AACGT$

5. ACGT$

6. CGT$

7. GT$

8. T$

9. $

When lexicographically sorted, the listed suffixes are in the following order:

9: $

0: AACGAACGT$

4: AACGT$

1: ACGAACGT$

5: ACGT$

2: CGAACGT$

6: CGT$

3: GAACGT$

7: GT$

8: T$

And finally, the suffix array of the given string will be (9,0,4,1,5,2,6,3,7,8).
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There exist a plethora of suffix array construction algorithms. These algorithms

differ significantly in time and space complexity, essential properties considering

the increasing number of large-scale applications. The time complexity of the

implemented algorithm called Induced Sorting Variable-Length LMS-Substrings (SA-

IS) is linear in the reference size. The main idea of the SA-IS algorithm is to

use the recursively obtained solution to the reduced problem to solve the original

problem. In this paper, we will not present the details of the algorithm for the suffix

array construction since the pseudocode of the algorithm, along with proves of its

correctness, can be found in the paper "Two Efficient Algorithms for Linear Time

Suffix Array Construction" (Nong et al., 2011).

3.4. Suffix array search

Once the suffix array is constructed, an O(p · logn) pattern matching algorithm can

be easily implemented (p is the length of the pattern, and n represents the size of the

suffix array). The idea of the pattern matching algorithm is based on the fact that if the

pattern is a substring of the string, then the pattern is the prefix of at least one suffix

of that string. Since the suffix array contains all sorted suffixes, performing two binary

searches can find all pattern occurrences. Although more efficient ways of searching

suffix arrays can be implemented as described in the article "Replacing suffix trees

with enhanced suffix arrays" (Abouelhoda et al., 2004), we have decided to use binary

search to experiment easily at this stage of the research.

Binary search is an algorithm that can find the value in a sorted array in logarithmic

time. In each step, binary search compares the target value with the middle element

in the range. If the value is not equal to the middle element, the range is reduced by

discarding the part where the value cannot be found. Therefore, half of the range is

discarded in each step. The interval reduction continues until the value is found or the

interval becomes empty.

Binary search is applied letter by letter. Each time a letter is matched, the range

of possible suffixes could be reduced, and the search continues until all letters in the

pattern are used. If the letter cannot be found in the current range, it means that the

given pattern does not appear in the reference. If the suffix array is constructed for

genomic data, this may be due to sequencing errors. However, if a significant portion

of the prefix is found within the suffix array, the range from the step before trying to

match sequencing error can be retained. In this way, it is possible to use large samples,

and at the same time, avoid many false-negative matches.
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Utilizing binary search to find patterns occurrences within the suffix array allows

using quality information provided in FASTQ files. Ignoring nucleotide bases

with low-quality represents a great advantage of the suffix array approach over the

approaches that work with the hash functions. Nucleotide bases that are likely to

be erroneously sequenced can be skipped, and the sample can be matched although

it contains errors. For each nucleotide base in FASTQ format, a quality score can be

used to calculate error probability. If the quality threshold is set beforehand, nucleotide

bases can be labeled as poor-quality if the corresponding quality score is lesser than

the quality threshold or as good-quality otherwise. Quality information can be used

in a binary search by ignoring nucleotides identified as poor quality. For example, if

the pattern ACCT is to be matched and there exists information that an error occurred

on the third letter, then the binary search looks for the pattern AC ∗ T (* represents

any character). The described approach is implemented by not reducing the range of

suffixes when the binary search hits a nucleotide base with poor quality. The wrong

nucleotide base is skipped, and the search continues with the following nucleotide.

Ignoring nucleotide bases with poor quality does not help if a deletion or insertion

occurs. However, in that case, it is still possible to match only the prefix - the part

of the sample before the deletion. Also, homopolymer compression can be helpful to

avoid insertions since, a nucleotide equal to the previous one is often inserted.

Following the example of Minimap2, our implementation allows setting the

algorithm parameters so that samples that appear too frequently in the reference are

discarded. If the range of suffixes contains more suffixes than the predefined threshold,

none of these matches will be declared as an anchor.

Although it contributes significantly to performance, discarding matches often

causes poor mapping accuracy for fragments sequenced from the repetitive regions.

To improve mapping accuracy for genomes with repetitions, HiFiMapper implements

a new heuristic called extended search. The heuristic allows reducing the number of

anchors while preserving valuable information. If the algorithm finds more matches

than the predefined threshold allows, the algorithm keeps extending the pattern and

searching suffix array until the interval is reduced enough. In that way, the algorithm

tries to find a difference that may be crucial in discovering the correct position.

3.5. Sampling

To detect potential matches between target and queries, the proposed method first finds

candidate matches by extracting and matching substrings from queries. Perhaps the
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easiest way to sample substrings is to extract every consecutive substring in the query.

If w denotes the sample length and n represents the query size, then we would take

the following substrings S[0, ..., w − 1], S[1, .., w], ...S[n− w, .., n− 1]. Even though

the described sampling approach allows high resistance to errors, it is not useful in

practice due to the high runtime caused by many samples.

The other possible approach is to extract samples randomly. Although there is no

guarantee that such sampling guarantees finding candidate matches that will result in

optimal alignment, it shows promising results in practice.

Inspired by the BLAST strategy for taking k-mers from the reference, we have

implemented another sampling procedure. If w denotes the sample length and

n represents the query size, the beforementioned procedure will extract following

substrings S[0, ..., w − 1], S[w, .., 2w − 1], ...S[n− w, .., n− 1].

The idea behind the third sampling method, called informed sampling, is to extract

a small number of samples that carry the most information for determining the proper

position of the query. The low query coverage reduces the time required to search

samples in the suffix array, consequently reducing the total execution time.

The additional data structure, the longest common prefix array (LCP), is used to

implement this sampling method. In the next section, we will explain the longest

common prefix array and how it is used to implement an informed sampling algorithm.

3.5.1. Longest Common Prefix Array

Udi Manber and Gene Myers introduced the longest common prefix array (LCP array)

to speed up the pattern matching algorithm. The LCP array is a data structure that

augments the suffix array. The LCP array stores the values of the longest common

prefixes between consecutive suffixes stored in the suffix array. If S represents string

for which the suffix array SA is constructed, LCP [i] represents the value of the longest

common prefix between suffixes SSA[i] and SSA[i+1].

For example, the LCP array for the previously constructed suffix array:
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9: $

0: AACGAACGT$

4: AACGT$

1: ACGAACGT$

5: ACGT$

2: CGAACGT$

6: CGT$

3: GAACGT$

7: GT$

8: T$

is (0,4,1,3,0,2,0,1,0).

The input for the LCP construction algorithm is the suffix array and the sequence

for which it is built. Kasai’s algorithm for LCP construction is used in our

implementation.

The construction algorithm is based on a simple fact. If it is known that the longest

common prefix between neighboring suffixes in the suffix array, denoted as Si and Sj

(Si ≤Sj), is k letters long, k > 0, it can be concluded that the LCP between suffixes

Si+1 and Sj+1 is k − 1 letters long. That is valid because suffixes Si+1 and Sj+1 are

obtained by removing the first letter from the suffixes Si and Sj . Kasai’s algorithm

iterates through suffixes from longest to shortest to utilize the beforementioned fact

and reuse the already calculated value k. However, Si+1 and Sj+1 may not be adjacent

in the suffix array, so it is not always possible to use the calculated value directly. The

suffix Si+1 must be lexicographically smaller or equal than the suffix Sj+1 (because Si

and Sj , have the same first letter and Si is immediately before Sj in sorted suffix array),

and there could be an arbitrary number of other suffixes between them. The longest

common prefix between two suffixes not adjacent in the suffix array corresponds to the

minimum of all values stored in the LCP array between these two suffixes. Therefore,

all LCP values between the suffixes Si+1 and Sj+1 in the LCP array are at least k − 1.

Although LCP stores the longest common prefixes only for those suffixes that are

adjacent in the suffix array, it can be easily used to find the longest common prefix

for any two suffixes. The longest common prefix of any two suffixes is denoted by

lcp(Si, Sj).

Suppose that Si and Sj are not adjacent in the suffix array and that Si is

lexicographically smaller or equal to the Sj . The longest common prefix between

these suffixes Si and Sj is min(LCP [IS[Si]], LCP [IS[Si] + 1], ...LCP [IS[Sj]− 1])

where IS is inverse suffix array (IS contains for each suffix Sk its position in the suffix
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array).

This means that for some suffix Si the value of lcp(Si, Sj) is less than or equal

to lcp(Si, Sk) if IS[Si] < IS[Sk] < IS[Sj]. If IS[Si] > IS[Sk] > IS[Sj] then

lcp(Si, Sk) is greater than or equal to lcp(Si, Sj). Simply put, it is to be expected that

some suffix Si has larger longest common prefixes with suffixes that are closer to that

suffix in the suffix array. For example, suppose we wanted to find 10 suffixes that have

the largest longest common prefixes with some suffix Si among all suffixes. In that

case, we could consider only 10 suffixes that are in front of the suffix Si in the suffix

array and 10 suffixes that are behind the suffix Si in the suffix array.

Suppose that lcp(Si, Sj) is k. In that case, the first letter that distinguishes the suffix

Si from the suffix Sj is S[i+ k + 1].

For each suffix Si, it is possible to find at which positions are the letters that

distinguish this suffix Si from its mos similar suffixes (suffixes that have the largest

longest common prefix with the given suffix among all suffixes in the string). Suppose

we want to find the letters that distinguish each suffix from its most similar N suffixes.

Then we need to consider only N suffixes that precede the Si in the suffix array and N

suffixes after the Si in the suffix array. Among these 2 ·N suffixes, the most similar N

suffixes to suffix Si are those that have the largest longest common prefixes with the

given suffix Si. The values of these longest common prefixes determine the letters that

distinguish the suffix Si from its most similar N suffixes.

Suppose that some suffix Si is located in a repetitive region that appears at x more

places in the sequence. Also, suppose that these repetitive regions are not identical

but that every pair of these repetitive regions differs in one letter, which is not located

at the beginning of the repetitive region. In this case, we expect that it is very likely

that the most similar x suffixes to the suffix Si are the suffixes located at the positions

that represent the beginnings of these repetitive regions. The longest common prefixes

between Si and its most similar x suffixes reveal the position of the letters that can

distinguish these repetitive regions. On the other hand, if the suffix Si is not part of a

repetitive region, we expect that the longest common prefixes between Si and its most

similar suffixes are relatively small numbers.

Information about letters that can distinguish repetitive regions cannot be used

directly for sampling. Instead, it is first necessary to detect potential fragment positions

in the reference with a small number of random samples. If the fragment is not part of

a repetitive region, then that small set of random samples is sufficient to determine the

correct position.

On the other hand, if the fragment is part of a repetitive region, then the random
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samples determine the candidate positions. For each candidate position, it is then

possible to find the distance to the letters that distinguish the suffix that starts at that

position from its most similar suffixes. If we were to extract a sample that should be

mapped to that distinguishing letter, its mapping could eliminate a large proportion

of the candidate positions that are not part of the correct mapping. The position of

that sample can be found based on the position of the sample that is mapped to the

candidate position and the distance to the letter that distinguishes repetitive regions.

The informed sampling algorithm samples precisely those samples.

To summarize, informed sampling first performs preprocessing to find letters that

distinguish each suffix in the reference from similar suffixes. In the implementation,

the positions are taken so that samples that should be mapped do not overlap. After

the preprocessing is done, the candidate positions are determined using a small

number of random samples. If the fragment is not part of a repetitive region, that

set of random samples will determine the mapping. Also, there will probably be no

distinguishing letters for these candidate positions since the longest common prefixes

between suffixes that begin on candidate positions and those most similar to them are

often smaller than the sample size (because the fragment is not part of the repetitive

region). On the other hand, if the fragment is part of a repetitive region, the algorithm

extracts new samples.

3.6. Chaining

The chaining algorithm implemented in this paper is described in the Minimap2 article.

Although Minimap2 uses minimizers of equal sizes, all equations consider minimizer

length and can be used when the anchors are not of equal lengths. All equations

presented in this section are taken from the Minimap2 paper (Li, 2018). The algorithm

input is a list of anchors sorted according to the end positions in the reference. The

algorithm finds various possible chains of anchors and their chaining scores.

The maximal chaining score f(i) up to anchor i of size wi can be calculated with

dynamic programming according to the equation:

f(i) = max{max
i>j≥1

{ f(j) + α(j, i)− β(j, i)}, wi} (3.1)

The number of matching nucleotide bases between two anchors is represented by

α(i, j) = min{min{yi − yj, xi − xj}, wi}. The gap cost is represented as β(j, i). The
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gap cost is defined with the following equation:

β(j, i) =



















∞ yj ≥ yi

∞ max{yi − yj, xi − xj} > G

γc((yi − yj)− (xi − xj)) otherwise

(3.2)

The gap cost is infinity if the distance between the anchors is greater than the

predefined parameter G. γc(l) is the function determines the cost of the gap of length

l.

γ(l) =







0.01 ∗ w ∗ |l|+ 0.5 ∗ log2 |l| l 6= 0

0 l = 0
(3.3)

The w in the definition of γc represents the average value of anchors lengths.

Calculating chaining scores with dynamic programming according to the described

equation has O(N2) time complexity, where N is the number of anchors. Minimap2

proposed a heuristic that improves the quadratic complexity of the algorithm.

The heuristic idea is not to consider all possible predecessors, but only h of them

when calculating chaining scores, resulting in O(hN) time complexity. This approach

is reasonable since chaining to the predecessors of the anchor that is already chained

often results in a lower score. The authors of Minimap2 suggest that the constant h

should be set to 50.

Each anchor continues some chain or starts a new one. If the anchor starts a new

chain, then the anchor is its own predecessor. If an anchor continues a chain, then

its predecessor is the anchor at the end of that chain. Storing predecessors when

calculating chain scores allows backtracking and chain identification.

Among all the possible chains obtained with backtracking, Minimap2 identifies

primary chains. Primary chains are chosen not to overlap more than 50% on the query

sequence.

In the case of several chains of comparable quality, we have decided to allow users

to define which chains should be reported. However, chains that overlap significantly

on the reference will be discarded.
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4. Implementation

The implemented tool allows setting some parameters in order to achieve the best

performance for a particular use case. Each parameter is briefly explained below, and

their default values are shown.

usage: ./HiFimapper [options ...] <target> [<sequences>]

# default output is stdout

<target>

path to the targets in FASTA/FASTQ format

<sequences>

path to the queries in FASTA/FASTQ format

options:

-t, --threads <int>l

defaul: 8

number of threads

-l, --sample_length <int>

default: 50

the length of the samples

-c, --sample_count <int>

default: 20

the number of samples extracted from each query

-m, --min_match <double>

default: 0.8

percentage of the sample that must be mapped

for the match to be valid

-q, --quality <int>

default: 90

phred quality

-f, --frequency <int>
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default: 10

maximum number of matches

-b, --bandwidth <int>

default: 10

size of bandwidth in which sample hits can be chained

-g, --gap <int>

default: 10000

maximal gap between sample hits in a chain

-d, --discard <bool>

default: false

discarding matches that occur more times

than the default frequency

-e, --extended_search <bool>

default: false

allows the extended search heuristics

-a, --sequential <bool>

default: false

blast like sampling algorithm

-i, --lcp_information <bool>

deafult: false

use lcp information for sampling

-N, --secondary_alignements <int>

default: 5

number of secondary alignements

-p, --ratio <double>

deafult: 0.8

secondary to primary alignements ratio

-n, --minimal_anchors <int>

default: 3

minimal number of anchors on chain

-x, --lcp_search_size <int>

defult: 100

number of suffixes / 2 to calculate lcp

-h, --help

prints the usage
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The threads parameter allows defining the number of threads that parallelly

execute suffix array search and chaining procedures. The sample_length

parameter defines the size of the samples extracted from the query, and the

sample_count parameter determines the number of these samples. The

min_match parameter specifies the percentage of the sample that must be exactly

matched to retain matches. Setting the min_match parameter to a value less than

1 allows using larger samples. The quality parameter sets a quality threshold. If

the quality score of the nucleotide base is lesser than that threshold, then the base is

marked as a poor quality base.

The frequency parameter determines the maximum size of a range of suffixes.

If the discard parameter is set, then all samples that have more matches with a

reference than the specified frequency will be discarded. Discarding anchors improves

execution time, but at the same time, decreases mapping quality. If the extended

search parameter is set, then the algorithm tries to reduce the number of matches

by continuing the search outside the sample until the desired number of matches is

reached or when it is no longer possible to expand and match the sample.

A random sampling algorithm is a default sampling method. If the sequential

option is set, then a sequential sampling algorithm is used. Setting the

lcp_information parameter allows using an informed sampling algorithm. In

that case, an LCP array should be constructed for the given sequence. Then, for each

position i in the reference sequence, the distances to letters that distinguish the suffix

Si from the most similar lcp_search_size· 2 suffixes are found.

4.1. Dependencies

4.1.1. OpenMP

The OpenMP API (https://www.openmp.org/) supports multithreading in the

C++ programing language. In C++, OpenMP uses #pragmas to fork additional threads

and create constructs for work sharing. Work sharing construct allows splitting loop

iterations among threads. OpenMP also supports synchronization mechanisms.

In the HiFiMapper implementation, OpenMP is used to parallelize several

components of the algorithm. Suffix array can be searched in parallel without any

synchronization mechanisms since binary search does not change underlying data.

Also, each binary search is entirely independent of other searches. The work-sharing

concept is utilized to distribute queries among multiple threads that implement the
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same logic for finding anchors. In that way, each thread is in charge of finding anchors

for several queries, which contributes significantly to performance.

The second component whose parallelization is straightforward is the chaining of

the anchors. Anchors belonging to different queries are independent and consequently

could be chained in parallel. The work-sharing concept is again an obvious choice to

achieve the desired behavior.

4.1.2. Biosoup

Biosoup (https://github.com/rvaser/biosoup) is a C++ collection of

header-only data structures implemented by Robert Vaser and used for storing

bioinformatic sequences in various tools. In the HiFiMapper implementation,

the NucleicAcid class was used and changed to support the required interface.

NucleicAcid is implemented to improve memory usage by storing bases in two bits

instead of 8-bit characters. The basic implementation saves the average quality for a

block of 8 bases. We have changed the quality storing logic to support separate quality

storage for each base and, at the same time, reduce memory usage. For each base,

quality information is stored in one bit. The quality is set to 1 if the corresponding

quality score is greater than the predefined quality threshold. In this way, the bases are

divided into two groups, high-quality and low-quality. This information is later used so

that bases belonging to the low-quality group would not be taken into account during

the process of finding anchors.

4.1.3. Bioparser

Bioparser (https://github.com/rvaser/bioparser) is a C++ header-only

parsing library developed by Robert Vaser. Except that it supports basic formats like

FASTA and FASTQ, it also supports zlib compressed files. Parsing in batches enables

easy memory management.

4.1.4. Python requirements

Python requirements are listed in the requirements.txt in the root directory of

the project. It should be noted that Python is not required to run the mapper. Python

and the listed requirements are used for writing experiments, as explained in Chapter 5.

Requirements in this version are the following python packages: tabulate, matplotlib

and pyfastx. The tabulate library allows printing tables in several formats, including

25



latex tables. The matplotlib package is used to draw sequence coverage graphs. The

pyfastx package is used to simply read files with fragments to find those that are not

mapped.
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5. Results

In this chapter, we will evaluate the HiFiMapper and compare the performance with

various existing tools when possible.

5.1. Evaluation

We have implemented a simple benchmark framework to facilitate the evaluation

process and allow easy reproduction of all conducted experiments. All experiments

listed in this chapter can be found in the tests/benchmarks folder in the GitHub

repository.

5.1.1. Benchmark Framework

Benchmark framework is written in Python programming language. It provides

abstractions for invoking various mapping tools, including HiFiMapper, Winnowmap

and Minimap2. The framework comes with a simple API for specifying various

options offered by the listed tools. Additionally, it is possible to generate and simulate

references and reads using the Reference and Reads classes that provide abstractions

for the HiFi simulator described in the Data chapter. Once the tools are called, it is

easy to access the obtained results and the information generated during the mapping

process, like time and memory consumption. Benchmark framework also offers

evaluators for calculating mapping accuracy on results gained by mapping fragments

generated by the HiFi simulator.

The mapping of the fragment is said to be correct if the Jaccard similarity between

the calculated interval (defined by start and end positions in a reference written in the

PAF output of tool) and true interval (true start and end positions of the fragment in

the reference) is greater than or equal to 0.1. Jaccard similarity index is a measure

of similarity defined as the ratio of the intersection and the union of two intervals. It

describes the percentage of shared bases between the calculated and accurate interval.
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The mapping accuracy can be calculated only for simulated fragments since there

is no ground truth for real fragments. Therefore, in the experiments including real data,

the evaluation metric is the number of mapped reads.

For each experiment, the command with which it is run is displayed. The command

includes only parameters that differ from the default parameters given in Chapter 4.

5.1.2. Hardware

All experiments were performed on the same hardware, with the following

specifications:

OS: Ubuntu 20.04.2 LTS

Arhitecture: x86_64

Processor: AMD EPYC 7662 64-Core Processor

Cores 128

Memory: 738 GiB

5.2. Artificial Data

We have evaluated the influence of different parameters on the performance of

HiFiMapper. Experiments in this section were performed on artificially generated

datasets to conclude how parameters affect mapping accuracy and execution time.

Each table for each pair of parameters contains three performance indicators:

mapping accuracy, number of unmapped fragments, and fragment mapping time.

Mapping accuracy is calculated as the proportion of accurately mapped fragments. The

fragment mapping time includes only the searching time (pattern matching in suffix

array) and chaining time (chaining of the found matches). The fragment mapping time

does not include preprocessing time, like suffix array construction and loading data,

since it does not depend on the parameters whose influence has been studied in this

section.

The first experiment shows how the sample length and the number of samples affect

mapping quality and execution time. In this experiment 1× 105 fragments of size

25× 103 were mapped against a reference of size 25× 106. There are no repetitive

regions in the reference. It could be expected that the increase in mapping time follows

the increase in sample size since pattern matching has O(plogn) time complexity,

where p is the size of the pattern, and n is the size of the suffix array. Also, more
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samples should take more time to find and chain matches. The data in the Table 5.1

confirm these run-time assumptions.

Table (5.1) The influence of sample_length (l) and sample_count (c) parameters on

performance. The first number represents mapping accuracy (proportion of correctly mapped

fragments). The second number represents the number of unmapped fragments. The third

number is total fragment mapping time in seconds (without preprocessing). The experiment

is started with the HiFiMapper -t 256 -d -n 1 -N 1 command, and the values of l

and c are set according to the table.

l / c 10 20 50 70 100

25 0.999, 0, 0.98 1.0, 0, 1.3 1.0, 0, 2.29 1.0, 0, 3.01 1.0, 0, 4.02

50 0.999, 0, 1.03 1.0, 0, 1.29 1.0, 0, 2.48 1.0, 0, 3.3 1.0, 0, 4.5

75 0.999, 0, 1.05 1.0, 0, 1.44 1.0, 0, 2.74 1.0, 0, 3.59 1.0, 0, 5.0

100 0.999, 0, 1.02 1.0, 0, 1.51 1.0, 0, 2.96 1.0, 0, 3.86 1.0, 0, 5.32

150 0.998, 0, 1.1 1.0, 0, 1.67 1.0, 0, 3.28 1.0, 0, 4.52 1.0, 0, 5.98

The second experiment investigates how the presence of repetitive regions affects

performance. For that purpose, the reference of size 25× 106, in which 30× 103 long

repetitive segments cover 10% of the reference size, was generated along with 1× 105

fragments sampled from reference with 0.1% sequencing error probability. Fragments

are 25× 103 bases long. Repetitive segments were generated so that all bases are

the same within all repetitive segments, except for approximately every 10000th base.

Although repetitive segments make the mapping task more difficult, the differences

(every 10,000th nucleotide base) should lead the algorithm to correctly map fragments

that are completely sampled from the repetitive segment.

The results of the experiment are shown in the Table 5.2. We can observe that when

sample length and sample count are small numbers, incorrect mappings occur because

the algorithm cannot distinguish between repetitive segments. With an insufficient

amount of information due to low coverage and the discarding of the samples, some

fragments may not be mapped.
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Table (5.2) The influence of sample_length (l) and sample_count (c) parameters on

performance when mapping against highly repetitive reference. The first number represents

mapping accuracy (proportion of correctly mapped fragments). The second number represents

the number of unmapped fragments. The third number is total fragment mapping time in

seconds (without preprocessing). The experiment is started with the HiFiMapper -t 256

-m 0 -f 3 -d -n 1 -N 1 command, and the values of l and c are set according to the

table.

l / c 10 20 50 70 100

25 0.981, 1976, 0.92 0.991, 513, 1.33 0.999, 8, 2.45 1.0, 0, 3.25 1.0, 0, 4.36

50 0.988, 849, 0.94 0.998, 70, 1.38 1.0, 0, 2.66 1.0, 0, 3.55 1.0, 0, 4.77

75 0.992, 306, 0.97 0.999, 2, 1.44 1.0, 0, 2.95 1.0, 0, 3.79 1.0, 0, 5.23

100 0.995, 88, 1.03 1.0, 0, 1.56 1.0, 0, 3.08 1.0, 0, 4.15 1.0, 0, 5.64

150 0.998, 12, 1.15 1.0, 0, 1.75 1.0, 0, 3.63 1.0, 0, 4.72 1.0, 0, 6.71

The following experiment examines how extended search heuristics affect

fragment mapping accuracy. The same data set as in the previous experiment, highly

repetitive reference, is used. We expect that the extended search heuristics can find the

key differences that determine the correct position. From the data shown in Table 5.3,

we can conclude that the extended search heuristic positively contributes to mapping

accuracy without significantly affecting the mapping time.

Table (5.3) The influence of sample_length (l) and sample_count (c) parameters

on performance when mapping against highly repetitive reference and using extended search

heuristic. The first number represents mapping accuracy (proportion of correctly mapped

fragments). The second number represents the number of unmapped fragments. The third

number is total fragment mapping time in seconds (without preprocessing). The experiment

is started with the HiFiMapper -t 256 -m 0 -f 3 -d -e -n 1 -N 1 command,

and the values of l and c are set according to the table.

l / c 10 20 50 70 100

25 0.999, 0, 0.88 1.0, 0, 1.34 1.0, 0, 2.35 1.0, 0, 3.28 1.0, 0, 4.37

50 0.999, 0, 0.97 1.0, 0, 1.36 1.0, 0, 2.58 1.0, 0, 3.23 1.0, 0, 4.72

75 0.999, 0, 1.15 1.0, 0, 1.46 1.0, 0, 2.69 1.0, 0, 3.61 1.0, 0, 4.92

100 0.999, 0, 1.07 1.0, 0, 1.55 1.0, 0, 2.83 1.0, 0, 3.68 1.0, 0, 5.2

150 1.0, 0, 1.08 1.0, 0, 1.6 1.0, 0, 3.17 1.0, 0, 4.37 1.0, 0, 5.78
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5.3. Simulated Data

In this section, we will evaluate HiFiMapper on datasets including real references and

fragments that are simulated from these references using the described HiFi simulator.

Homo sapiens chromosomes 13 and 19 are real references used in this section. A

total of 600000 fragments of size 25000 were generated for each chromosome. The

probability that a sequencing error occurred is the same for all bases in the fragment,

and its value is 0.1

For each chromosome, the HiFiMapper was run with different parameters.

Minimap2 and Winnowmap were run with default parameters for HiFi data. To make

it easier to evaluate the tools, we consider only one mapping for one fragment for

each tool. The mapping that is considered is the one with the highest quality, or

the first printed in the case of multiple mappings with equal quality. The number of

correctly mapped, incorrectly mapped, and unmapped fragments are shown for each

tool. Additionally, the total execution time is measured for each experiment.

Table 5.4 shows how sample size and quality information affect the performance

of HiFiMapper when mapping fragments on chromosome 19. The smaller number

of wrong mappings when using larger samples confirms the assumption that larger

samples better determine the accurate position in the reference. Also, using quality

information improves mapping accuracy.

Results in Table 5.5 show that the use of extended search heuristics along with

discarding matches and sequential sampling gives the best results for chromosome 19.

Similar parameters, with a higher frequency, provide the best results for chromosome

13, as shown in Table 5.6.

Coverage graphs visually show fragments mapping. For each position in the

reference, the value on the coverage graph corresponds to the number of fragments

that cover that position. Ideally, each position should be covered with an equal number

of fragments. For the simulated datasets, coverage graphs are shown separately for

correctly and incorrectly mapped fragments in Figure 5.1 and in Figure 5.2.

Suppose we define that a correct mapping is the mapping that maps a fragment to

the part of the reference from which the fragment is sequenced. In that case, we can

observe that all the tools incorrectly map fragments to approximately equal parts of the

reference. However, the beforementioned definition of correct mapping is challenging

to apply to real genomic data. Real sequences often contain repetitive regions that are

completely identical and larger than the fragment being mapped. So, if the sequenced

fragment appears several times in the sequence due to identical repetitive regions, then
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there are several equally good mappings. On the other hand, the algorithm is expected

to find a correct mapping (mapping to the part from which the fragment was extracted),

which is not possible in the described case. For example, human chromosome 13 has

multiple completely identical repetitive segments larger than 25,000 bases. Since these

segments are indistinguishable, all three tools incorrectly map fragments in these areas.

Table (5.4) Influence of sample_size and quality on HiFiMapper performance on

dataset simulated from human chromosome 19. The reference size is 61707364. The total

number of reads is 600000.

Method RealTime Correct Wrong Unmapped

HiFiMapper -t 256 -l 50 -c 1000 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 504.207288 595979 4021 0

HiFiMapper -t 256 -l 100 -c 500 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 385.435190 598009 1991 0

HiFiMapper -t 256 -l 250 -c 200 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 341.273078 599111 889 0

HiFiMapper -t 256 -l 500 -c 100 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 323.511647 599594 406 0

HiFiMapper -t 256 -l 50 -c 1000 -m 0 -f 15 -d -e -n 1 -N 1 465.228541 596229 3771 0

HiFiMapper -t 256 -l 100 -c 500 -m 0 -f 15 -d -e -n 1 -N 1 387.210408 598015 1985 0

HiFiMapper -t 256 -l 250 -c 200 -m 0 -f 15 -d -e -n 1 -N 1 346.227833 599096 904 0

HiFiMapper -t 256 -l 500 -c 100 -m 0 -f 15 -d -e -n 1 -N 1 327.387002 599617 383 0
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Table (5.5) Influence of different parameters on HiFiMapper performance and comparison

with other tools on dataset simulated from human chromosome 19. The reference size is

61707364. The total number of reads is 600000. The best results are highlighted for each tool.

Only one mapping for each fragment was considered (the mapping with the highest mapping

quality) in the evaluation process for each tool. If multiple mappings of one fragment have the

same quality, the first printed mapping is selected.

Method RealTime Correct Wrong Unmapped

HiFiMapper -t 256 -l 500 -f 15 -d -i -n 1 -N 1 -x 1000 319.091273 598879 1116 50

HiFiMapper -t 256 -l 500 -f 15 -d -i -n 1 -N 1 -x 5000 325.688057 598898 1099 48

HiFiMapper -t 256 -l 500 -f 100 -d -i -n 1 -N 1 -x 1000 322.700111 596248 3752 0

HiFiMapper -t 256 -l 500 -f 100 -d -i -n 1 -N 1 -x 5000 322.897989 596242 3758 0

HiFiMapper -t 256 -l 500 -c 50 -f 15 -d -i -n 1 -N 1 -x 1000 333.790990 598460 1540 3

HiFiMapper -t 256 -l 500 -c 50 -f 15 -d -i -n 1 -N 1 -x 5000 333.361971 598492 1508 1

HiFiMapper -t 256 -l 500 -c 50 -f 100 -d -i -n 1 -N 1 -x 1000 344.375467 594401 5599 0

HiFiMapper -t 256 -l 500 -c 50 -f 100 -d -i -n 1 -N 1 -x 5000 348.768581 594460 5540 0

HiFiMapper -t 256 -l 1000 -f 15 -d -i -n 1 -N 1 -x 1000 321.243638 597211 2789 515

HiFiMapper -t 256 -l 1000 -f 15 -d -i -n 1 -N 1 -x 5000 319.582608 597217 2783 468

HiFiMapper -t 256 -l 1000 -f 100 -d -i -n 1 -N 1 -x 1000 323.653853 596973 3027 479

HiFiMapper -t 256 -l 1000 -f 100 -d -i -n 1 -N 1 -x 5000 319.925540 597024 2976 460

HiFiMapper -t 256 -l 1000 -c 50 -f 15 -d -i -n 1 -N 1 -x 1000 341.150441 599219 781 1

HiFiMapper -t 256 -l 1000 -c 50 -f 15 -d -i -n 1 -N 1 -x 5000 337.311784 599231 769 3

HiFiMapper -t 256 -l 1000 -c 50 -f 100 -d -i -n 1 -N 1 -x 1000 338.858804 598770 1230 0

HiFiMapper -t 256 -l 1000 -c 50 -f 100 -d -i -n 1 -N 1 -x 5000 343.044332 598767 1233 1

HiFiMapper -t 256 -l 1000 -f 15 -d -e -a -n 1 -N 1 304.716986 599963 37 1

HiFiMapper -t 256 -l 1000 -f 15 -e -a -n 1 -N 1 305.441583 599963 37 1

HiFiMapper -t 256 -l 1000 -f 15 -d -a -n 1 -N 1 304.257653 599957 43 4

HiFiMapper -t 256 -l 1000 -f 15 -a -n 1 -N 1 300.641277 599959 41 1

HiFiMapper -t 256 -l 500 -f 15 -d -e -a -n 1 -N 1 311.444440 599990 10 0

HiFiMapper -t 256 -l 500 -f 15 -e -a -n 1 -N 1 306.527749 599982 18 0

HiFiMapper -t 256 -l 500 -f 15 -d -a -n 1 -N 1 308.270169 599983 17 0

HiFiMapper -t 256 -l 500 -f 15 -a -n 1 -N 1 312.909779 599941 59 0

HiFiMapper -t 256 -l 500 -f 15 -d -e -n 1 -N 1 299.494604 599721 279 3

HiFiMapper -t 256 -l 500 -f 15 -e -n 1 -N 1 298.865729 599774 226 0

HiFiMapper -t 256 -l 500 -f 15 -d -n 1 -N 1 300.738720 599309 680 137

HiFiMapper -t 256 -l 500 -f 15 -n 1 -N 1 302.649075 599556 444 0

minimap2 -x map-hifi -t 256 -N 0 -p 1 117.801 599994 6 0

Winnowmap -x map-pb -t 256 -p 1 517.977 599962 38 0
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(a) Distribution of fragments correctly mapped

against human chromosome 19 with HiFiMapper.

The data is generated with the following

command HiFiMapper -t 256 -l 500

-f 15 -d -e -a -n 1 -N 1.

(b) Distribution fragments incorrectly mapped

against human chromosome 19 with HiFiMapper.

The data is generated with the following

command HiFiMapper -t 256 -l 500

-f 15 -d -e -a -n 1 -N 1.

(c) Distribution of fragments correctly mapped

against human chromosome 19 with Minimap2.

The data is generated with the following

command minimap2 -x map-hifi -t

256 -N 0 -p 1.

(d) Distribution fragments incorrectly mapped

against human chromosome 19 with Minimap2.

The data is generated with the following

command minimap2 -x map-hifi -t

256 -N 0 -p 1.

(e) Distribution of fragments correctly mapped

against human chromosome 19 with Winnowmap.

The data is generated with the following command

Winnowmap -x map-pb -t 256 -p 1.

(f) Distribution fragments incorrectly mapped

against human chromosome 19 with Winnowmap.

The data is generated with the following command

Winnowmap -x map-pb -t 256 -p 1.

Figure (5.1) Coverage graphs for human chromosome 19 34



Table (5.6) Influence of different parameters on HiFiMapper performance and comparison

with other tools on dataset simulated from human chromosome 13. The reference size is

113566686. The total number of reads is 600000. The best results are highlighted for each

tool. Only one mapping for each fragment was considered (the mapping with the highest

mapping quality) in the evaluation process for each tool. If multiple mappings of one fragment

have the same quality, the first printed mapping is selected.

Method RealTime Correct Wrong Unmapped

HiFiMapper -t 256 -l 500 -f 75 -d -i -n 1 -N 1 -x 5000 413.182009 580316 19684 483

HiFiMapper -t 256 -l 500 -f 150 -d -i -n 1 -N 1 -x 5000 504.287402 580308 19692 108

HiFiMapper -t 256 -l 500 -c 50 -f 75 -d -i -n 1 -N 1 -x 5000 647.565967 580598 19402 44

HiFiMapper -t 256 -l 500 -c 50 -f 150 -d -i -n 1 -N 1 -x 5000 1156.483292 579598 20402 3

HiFiMapper -t 256 -l 1000 -f 75 -d -i -n 1 -N 1 -x 5000 393.827826 579525 20475 559

HiFiMapper -t 256 -l 1000 -f 150 -d -i -n 1 -N 1 -x 5000 400.320342 579068 20932 532

HiFiMapper -t 256 -l 1000 -c 50 -f 75 -d -i -n 1 -N 1 -x 5000 691.141032 581631 18369 9

HiFiMapper -t 256 -l 1000 -c 50 -f 150 -d -i -n 1 -N 1 -x 5000 791.671239 580956 19044 10

HiFiMapper -t 256 -l 1000 -f 75 -d -e -a -n 1 -N 1 328.569060 582378 17622 2

HiFiMapper -t 256 -l 1000 -f 75 -e -a -n 1 -N 1 327.946092 582416 17584 2

HiFiMapper -t 256 -l 1000 -f 75 -d -a -n 1 -N 1 333.072614 582236 17764 33

HiFiMapper -t 256 -l 1000 -f 75 -a -n 1 -N 1 328.382296 582373 17627 2

HiFiMapper -t 256 -l 1000 -f 75 -d -e -n 1 -N 1 333.697609 580416 19584 282

HiFiMapper -t 256 -l 1000 -f 75 -e -n 1 -N 1 335.362858 580614 19386 223

HiFiMapper -t 256 -l 1000 -f 75 -d -n 1 -N 1 326.541286 580069 19931 445

HiFiMapper -t 256 -l 1000 -f 75 -n 1 -N 1 334.440019 580535 19465 202

HiFiMapper -t 256 -l 500 -f 75 -d -e -a -n 1 -N 1 336.171272 582567 17433 0

HiFiMapper -t 256 -l 500 -f 75 -e -a -n 1 -N 1 334.481023 582562 17438 0

HiFiMapper -t 256 -l 500 -f 75 -d -a -n 1 -N 1 339.645863 582426 17574 17

HiFiMapper -t 256 -l 500 -f 75 -a -n 1 -N 1 341.340677 581189 18811 0

HiFiMapper -t 256 -l 500 -f 75 -d -e -n 1 -N 1 336.260026 581983 18017 12

HiFiMapper -t 256 -l 500 -f 75 -e -n 1 -N 1 310.353638 581928 18072 0

HiFiMapper -t 256 -l 500 -f 75 -d -n 1 -N 1 333.297837 579900 20100 1008

HiFiMapper -t 256 -l 500 -f 75 -n 1 -N 1 322.623996 579760 20240 0

minimap2 -x map-hifi -t 256 -N 0 -p 1 166.855 582418 17582 0

Winnowmap -x map-pb -t 256 -p 1 2793.503 582536 17464 0
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(a) Distribution of fragments correctly mapped

against human chromosome 13 with HiFiMapper.

The data is generated with the following

command HiFiMapper -t 256 -l 500

-f 75 -d -e -a -n 1 -N 1.

(b) Distribution fragments incorrectly mapped

against human chromosome 13 with HiFiMapper.

The data is generated with the following command

HiFiMapper -t 256 -l 500 -f 75 -d

-e -a -n 1 -N 1.

(c) Distribution of fragments correctly mapped

against human chromosome 13 with Minimap2.

The data is generated with the following

command minimap2 -x map-hifi -t

256 -N 0 -p 1.

(d) Distribution fragments incorrectly mapped

against human chromosome 13 with Minimap2.

The data is generated with the following

command minimap2 -x map-hifi -t

256 -N 0 -p 1.

(e) Distribution of fragments correctly mapped

against human chromosome 13 with Winnowmap.

The data is generated with the following command

Winnowmap -x map-pb -t 256 -p 1.

(f) Distribution fragments incorrectly mapped

against human chromosome 13 with Winnowmap.

The data is generated with the following command

Winnowmap -x map-pb -t 256 -p 1.

Figure (5.2) Coverage graphs for human chromosome 13 36



5.4. Real Data

In this section, we will compare the performance of HiFiMapper with the currently

most used mapping tools on real data. Since real data do not include information

about positions in reference from which fragments were sequenced, it is impossible to

estimate the mapping accuracy. Therefore, only the number of unmapped fragments

and the execution time are shown.

The HiFiMapper was run with several different sample sizes. The number of

samples was set to cover each base in the fragment with about 5 samples. Random

sampling was used for both data sets. The results for human chromosome 19 are shown

in Table 5.7. It is noticeable that the run time increases as the sample size decreases,

perhaps because smaller samples appear more frequently in the reference. Table 5.8

contains results for human chromosome 13.

The coverage graphs in Figure 5.3 visually show the mapping results of all

tools. Only one mapping, with the highest mapping quality, for each fragment was

considered. If multiple mappings of one fragment have the same quality, the first

printed mapping is selected.

Table (5.7) Influence of different parameters on HiFiMapper performance and comparison

with other tools on human chromosome 19 and real fragments.

Method RealTime Unmapped

HiFiMapper -t 256 -l 50 -c 1000 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 127.440 0

HiFiMapper -t 256 -l 100 -c 500 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 86.992 0

HiFiMapper -t 256 -l 250 -c 200 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 75.803 0

HiFiMapper -t 256 -l 500 -c 100 -m 0 -q 0 -f 15 -d -e -n 1 -N 1 71.482 12

minimap2 -x map-hifi -t 256 -N 1 -p 1 28.822 18

Winnowmap -x map-pb -t 256 -p 1 66.847 30
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Table (5.8) Influence of different parameters on HiFiMapper performance and comparison

with other tools on human chromosome 13 and real fragments.

Method RealTime Unmapped

HiFiMapper -t 256 -l 50 -c 1000 -m 0 -q 0 -f 75 -d -e -n 1 -N 1 244.591 0

HiFiMapper -t 256 -l 100 -c 500 -m 0 -q 0 -f 75 -d -e -n 1 -N 1 168.191 0

HiFiMapper -t 256 -l 250 -c 200 -m 0 -q 0 -f 75 -d -e -n 1 -N 1 139.073 0

HiFiMapper -t 256 -l 500 -c 100 -m 0 -q 0 -f 75 -d -e -n 1 -N 1 139.213 5

minimap2 -x map-hifi -t 256 -N 1 -p 1 44.774 11

Winnowmap -x map-pb -t 256 -p 1 384.600 13
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(a) Distribution of fragments mapped against

human chromosome 19 with HiFiMapper. The

data is generated with the following command

HiFiMapper -t 256 -l 250 -c 200

-m 0 -q 0 -f 15 -d -e -n 1 -N 1.

(b) Distribution of fragments mapped against

human chromosome 13 with HiFiMapper. The

data is generated with the following command

HiFiMapper -t 256 -l 250 -c 200

-m 0 -q 0 -f 75 -d -e -n 1 -N 1.

(c) Distribution of fragments mapped against

human chromosome 19 with Minimap2. The

data is generated with the following command

minimap2 -x map-hifi -t 256 -N 1

-p 1.

(d) Distribution of fragments mapped against

human chromosome 13 with Minimap2. The

data is generated with the following command

minimap2 -x map-hifi -t 256 -N 1

-p 1.

(e) Distribution of fragments mapped against

human chromosome 19 with Winnowmap. The

data is generated with the following command

Winnowmap -x map-pb -t 256 -p 1.

(f) Distribution of fragments mapped against

human chromosome 13 with Winnowmap. The

data is generated with the following command

Winnowmap -x map-pb -t 256 -p 1.

Figure (5.3) Coverage graphs for human chromosome 13 and human chromosome 19 39



6. Conclusion

This paper describes an algorithm for mapping fragments to a known reference based

on a suffix array. The suffix array has many advantages over hash functions that are

the most used alternative to the suffix array. The main advantage is that using a suffix

array allows the implementation of various sampling methods. Another advantage is

that the suffix array search procedure can use information about sequencing errors.

Additionally, it is possible to match only the prefix of a sample, making it possible to

find part of the sample even though there is an error in it. This high resistance to errors

allows the use of much larger samples compared to the size of the minimizer, and larger

samples often better determine the true position of the fragment in the reference.

We have provided numerous experiments on different datasets, including

artificially generated data, simulated data, and real data. The HiFiMapper was run with

various parameters to understand their impact on accuracy and execution time. The

presented results show that the performance indicators are comparable to the currently

most popular tools.

Since this algorithm is still a work in progress, it is not yet suitable for some typical

bioinformatics applications. Future work includes optimizing implementation and

exploring how the stated benefits of the suffix array can be utilized to reduce execution

time and increase accuracy even more.
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Brzo preklapanje visoko pouzdanih jednomolekularnih očitanja

Sažetak

Tvrtka Pacific Bioscience 2019. godine predstavila je novu tehnologiju

sekvenciranja visoko pouzdanih fragmenata koja kombinira koncepte korištene za

sekvenciranje tradicionalnih kratkih i dugačkih očitanja s greškama. Visoko pouzdani

fragmenti karakterizirani su velikom duljinom i visokom točnosnu. Činjenica da

podatci imaju jako mali broj grešaka može se koristiti za osmišljavanje algoritama

koji su manje osjetljivi na pogreške. U ovom radu predstavit ćemo algoritam za

mapiranje visoko pouzdanih fragmenata. Algoritam koristi sufiksno polje i seed-chain-

align proceduru. Analizirat ćemo performanse i točnost razvijenog alata i usporediti

ga sa suvremenim algoritmima za mapiranje.

Ključne riječi: Visoko pouzdana jednomolekularna ocitanja, sufiksno polje

Rapid overlapping of Single Molecule High-Fidelity Sequencing Data

Abstract

In 2019, Pacific Bioscience introduced highly accurate long-read sequencing (HiFi

sequencing), a paradigm that combines concepts from traditional short and long error-

prone reads technologies. Long lengths and high base-level resolution characterize

the HiFi fragments. These characteristics can be utilized to design algorithms that are

less sensitive to errors. In this article, we present the novel algorithm for HiFi reads

mapping. The algorithm is based on suffix arrays and a standard seed-chain-align

procedure. We will analyze the performance and accuracy of the developed tool and

compare it to state-of-the-art algorithms.

Keywords: HiFi PacBio reads, DNA sequencing, suffix array
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