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ued advice throughout my years as a student. Thank you for the opportunity to work

on compelling research projects which provided me with great insights and experience.

I would also like to thank Dominik Stanojević for his guidance as I worked on this
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1. Introduction

There are many situations where we would like to know what is written in the DNA of

an organism. Be it new research exploring and mapping out genomes to see how the

organism functions, finding similarities and relations between species, or for medici-

nal purposes like screening for diseases and finding an effective therapy for a certain

illness. Reading DNA provides useful information that gives important insights across

many areas of life sciences.

Currently, there are two main methods for sequencing DNA developed by two com-

panies that produce long reads: Pacific Biosciences and Oxford Nanopore Technolo-

gies. The methods they developed for sequencing DNA are fundamentally different.

Pacific Biosciences developed a sequencing platform based on a method called SMRT

sequencing (single-molecule, real-time), which can be summarised as a method that

uses fluorescent dyes for each of the four bases which give off signals that are observed

and picked out by a detector [7]. Oxford Nanopore Technologies (ONT) developed a

platform based on reading the current level that is influenced by the nucleotides. The

data generated by the latter of these methods will be the focus of this thesis and is

described in more detail in section 1.1. Once the sequencing method is covered we

can take a look at the problem that exists with ONT sequencing in section 1.2 whose

solution is researched in this thesis.

After that, we will go through some of the past approaches to solving this problem

as well as some of the current approaches that are used today in section 2.1 to give

context for the general idea and motivation for the approach presented in this thesis

covered in section 2.2.

With the introduction covered, we will look into the data we are dealing with and

how it is prepared for training a basecalling model. This will allow us to begin with

the main part of this thesis, the model architecture, training process, evaluation, and

experimentation details that we iterated through. Then, in chapter 5, we can see the

final result in the form of a command-line implementation, cover the technical aspects

of things described in chapter 4, and see how the implementation compares to other
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selected methods in chapter 6. Finally, the thesis will provide a conclusion with a

summary of important information, key takeaways, and a vision of future work to be

done in this area.

1.1. The Technology - ONT

Oxford Nanopore Technologies is a company based in the United Kingdom that pro-

duces devices for sequencing biological data including DNA using a technology called

nanopore sequencing that measures changes in ionic current passing through the com-

ponents that are in the device to infer the DNA sequence that is causing the changes in

the current level. The most notable of those devices is a lightweight, portable device

called MinION.

The central part of MinION is a flow cell that carries up to 2048 nanopores set

in an electrically resistant membrane that ensures all current passes through the pores

[15]. Each of those nanopores can be tracked individually and independently of other

nanopores. A nanopore is essentially a nano-scale opening through which a DNA

strand can pass and as the DNA strand passes through it, the changes in ionic current

level in the pore are measured and stored. The DNA samples are prepared for sequenc-

ing by attaching a motor protein on the 5’ end and ligating adapter sequences to both

ends of DNA. The motor protein (or enzyme motor) attaches to the pore and then un-

winds the DNA strands, and ensures the DNA moves through the pore at a steady pace

to prevent bases from being skipped. The ligated adapter at the 5’ end increases the

chances the DNA will connect to the pore by using tethers and helps the motor protein

attach to the pore. The ligated adapter at the 3’ end can be used to sequence the other

strand of the DNA too by forming a hairpin loop that pulls the other strand into the

motor protein once the sequencing of the original strand is finished. This way we can

obtain 2D reads as opposed to the usual 1D reads. The two sequences are aligned to

produce a higher accuracy 2D read. The downside to using hairpin adapters is lower

throughput. At any given moment, there is a single 5-mer in the pore that causes a

specific electrical resistance of the channel that the pore creates in the membrane de-

pending on which bases are contained in the 5-mer. As the DNA strand passes through

the pore, the 5-mer changes and so does the electrical resistance of the channel which

in turn changes the level of the ionic current passing through the pore. The produced

signal has a roughly rectangular shape of varying levels. The details on how that cap-

tured data looks like are covered in chapter 3.

2



Figure 1.1: Nanopore sequencing illustration

1.2. The Problem - Basecalling

The nanopore sequencing device outputs a signal of ionic current, but we still do not

have an actual nucleotide sequence in the form of the four familiar bases, or in terms of

computing — characters: A, C, G and T. This is where basecalling comes in. To get the

nucleotide sequence we need to use some kind of algorithm that will process the signal

and transform it into a sequence of bases, but the problem is not so straightforward.

Firstly, since DNA goes through the pore at an average of 450 bp/s (bp - base pairs)

and the current is measured at a frequency of 4000 Hz, there are around 9 measure-

ments/bp [28], but that is still only an average and the actual number varies, which

complicates things. Secondly, the current levels don’t stay at the same level for a sin-

gle 5-mer, but they also vary themselves, which can introduce some errors. This makes

it an N-to-1 sequence problem on the scale of a single base and an N-to-M sequence

problem on the scale of the whole sequence, where the number of measurements N

varies from case to case, with variation in the current levels for each base. Another

thing to note here is the question of homopolymers. It is difficult to map a long se-

quence of measurements at roughly the same level within variation for a given base to

a specific homopolymer length due to the varying number of measurements per base,
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e.g. there are 63 measurements in one segment of a signal around a certain current

level that corresponds to the AAAAA 5-mer, if we assume the average 9 measure-

ments/bp we can conclude the segment maps to 11 A’s (63
9
= 7 base movements and

(5 − 1) = 4 to complete the 5-mer), but if the average dropped to 7 measurements/bp

at that moment we could conclude the segment maps to 13 A’s. What we can gather

from this is that the basecalling algorithm needs to be relatively complex considering

how basic the data is.
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2. Approaches to basecalling

2.1. Current & Past Approaches

This section will provide a brief overview of current and past approaches in a level of

detail that depends on how old they are, how good they are, and how close they are to

our approach. The earliest version of ONT’s basecaller was a Hidden Markov Model

(HMM), after which they switched to RNNs which are still being used in some current

models [30]. The latest type of used model is a convolutional neural network.

2.1.1. Guppy Basecaller

ONT developed a data processing toolkit called Guppy that contains their basecalling

algorithms. The exact algorithms and architectures they use are closed source and

not publicly available, but the basic ideas are known and they will be covered in this

subsection. The architecture that is used in Guppy is called RGRGR (Image 2.1),

which represents the architecture itself: alternating reverse-GRU and GRU layers [35].

There are two versions of this architecture, the standard and the flip-flop version.

The standard version uses a convolutional layer as a feature encoder, followed by

alternating reverse-GRU and GRU layers for a total of 5 layers (RGRGR). At the out-

put, there is a decoder that can predict 1025 different values, 1024 for each possible

5-mer plus a special "stay" state.

The flip-flop version is similar, it also has a convolutional layer as a feature encoder,

albeit with a wider kernel and smaller stride, and the same RGRGR component, but

the output is calculated by a variation of the CTC decoder that replaces blanks with

"flip" and "flop" variation for each base, so: {A+, C+, G+, T+, A−, C−, G−, T−}.

This variation helps with calling homopolymers better [28]. Guppy achieves very good

accuracy with high efficiency and speed.
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Figure 2.1: RGRGR architecture

2.1.2. Bonito

Bonito [22] is part of a new generation of basecallers that moved away from RNNs. It

is also open-source and publicly available. Bonito is a convolutional model based on

the QuartzNet architecture [17] made for the Automatic Speech Recognition task.

QuartzNet is built upon the Jasper [19] architecture and replaces the standard 1D

convolutions with time-channel separable convolutions, a kind of depthwise separable

convolutions, to reduce the number of parameters and allow for much wider kernels.

1D time-channel separable convolution is a 1D depthwise separable convolution with

kernel size K that is applied across K time frames and to each channel separately,

followed by a pointwise convolution that is applied across all channels, but to each

time frame separately. The architecture consists of repeating blocks of repeating con-

volutional modules, but first, it starts with a single 1D convolutional layer C1. It is

then followed by the aforementioned sequence of blocks. Each of those blocks Bi is

repeated Si times with residual connections between blocks and each of those blocks

contains the same core modules that are repeated Ri and each of those modules con-

sists of four layers in this order: depthwise convolution, pointwise convolution, batch

normalization, and ReLU. After the sequence of repeating blocks, there are three con-

volutional layers C2, C3, and C4. At the end of the model, there is a standard CTC

decoder and the model is trained with CTC loss.

Bonito adopted this architecture meant for automatic speech recognition to solve

the basecalling problem. We can see the analogy by observing the data: speech is
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recorded in time as a signal and can be segmented into units that correspond to specific

characters (depending on the approach it could also be phonemes or words) and those

characters form sentences; DNA sequencing data is also recorded in time as a signal

and can be segmented into units that correspond to specific bases and those bases make

up DNA sequences. By experimenting with the model, they manage to achieve state-

of-the-art accuracy in read and consensus-level accuracy.

2.2. Our Approach

2.2.1. Motivation

The advances in computational capabilities and efficient methods are allowing larger

and more complex models to become feasible, boosting the capacity that the models

have. There are also large amounts of data available, but much of it is not usable

because it is not annotated or labeled.

Amount of Data

Currently, there are large amounts of many different types of data available to us, and

more are being produced every day. Unfortunately, the vast majority of that data is not

usable in the context of machine learning because it is not annotated or labeled. Having

more training data available is almost always a positive thing, assuming the data is not

too noisy and carries information, as it lowers the chances of overfitting by giving a

better representation of the data found in practice. Most notable examples of the types

of data that are available in large amounts are images, videos, and text, but it is also

true for biological genomic data which comes from high-throughput sequencing and

by itself can come in very large units of data — a human genome has around 3 Gbp,

if you represent each base pair with a character or byte of data, you get 3 GB of data

for a single human genome. Even simpler organisms, like bacteria, have genomes that

range from 130 kbp [21] to 14 Mbp [11].

Deep Learning Trends

One way to utilize these large amounts of data, regardless of it being annotated or

not, is an approach called self-supervised learning [34]. It combines the supervised

and unsupervised approaches by training the models in a supervised manner using

unlabeled data from which task-specific "labels" are constructed. In this way, you
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Figure 2.2: QuartzNet/Bonito architecture. 1D time-channel separable convolution layer is

denoted with TCSConv and later decomposed to depthwise and pointwise convolutions.
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can combine supervised learning which gives great results with unlabeled data which

would be expensive and time-consuming to label. This approach has already proved

successful in language modeling with the famous BERT [6] or in image classification

with SimCLR [3].

2.2.2. Self-supervised Pre-training

The self-supervised learning approach on its own usually doesn’t provide something

very useful, but it can be used to learn better features and latent representations or

embeddings which prove helpful in combination with other models, i.e. the self-

supervised approach is used for pre-training models that are then fine-tuned for other

downstream tasks.

One of the difficult parts of self-supervised learning is forming a pretext task for

the model to solve that will make the model learn useful representations that describe

the data in a general way, and not only in a way that will allow it to solve the pretext

task.

For example, BERT [6] uses two pretext tasks, MLM (Masked Language Model-

ing) and NSP (Next Sentence Prediction). The MLM task consists of masking certain

tokens of a sentence and making the model predict which token it was using the con-

text from surrounding tokens, thus learning contextual representations of words. The

NSP task consists of a simple classification task, whether a sentence follows another

sentence or not, allowing the model to learn relationships between sentences, which is

helpful in tasks like question answering.

Another very popular approach is contrastive representation learning which can be

well illustrated on images. The core of contrastive representation learning focuses on

creating embeddings in a way that the embeddings are similar for examples that are

similar in the input space, and dissimilar embeddings for examples that are dissimilar

in the input space. There are multiple loss functions developed for this purpose like

Contrastive Loss [4], Triplet Loss [27], NCE Loss [10], and InfoNCE Loss [31]. They

are all based on comparing positive samples and negative samples and measuring their

distances. What the terms positive and negative denote, depends on the setting. In

Contrastive Loss, positive samples are simply ones that are similar in the input space

and negative samples are ones that are dissimilar in the input space, so the loss is

based on minimizing the distance between latent representations of positive samples

and maximizing the distance between latent representations of negative samples. In

Triplet Loss there are three samples taken into consideration, one is an anchor, one is
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Figure 2.3: Triplet Loss illustration

a positive sample and one is a negative sample. The positive sample is similar to the

anchor and the negative sample is dissimilar, and so the loss is based on minimizing

the distance between the anchor and the positive sample while maximizing the dis-

tance between the anchor and the negative sample, see Figure 2.3. On the other hand,

InfoNCE Loss takes a context vector and a set of samples where only one is a positive

sample from the target distribution, while the other samples are noise, and the task is to

identify the positive sample that corresponds to the context vector among the negative

samples that are unrelated to the context vector, i.e. noise.

2.2.3. Architecture Style

When using the self-supervised pre-training approach the architecture can be split into

two core components: the encoder and the decoder. The encoder is the component

that is trained during pre-training and outputs new feature embeddings. The decoder is

attached to the encoder and is used to decode the features computed by the encoder.

Encoder

During pre-training, the encoder is used as a backbone and there is a head component

at the output that transforms the embeddings into a form suitable for computing the

loss function, and the head is later removed for downstream tasks as it is only useful

for pretext tasks. The encoder can create embeddings on different levels of the input. In

images, it can be used to represent fragments of images, whole images, or a sequence

of images. The level used is based on the needs in the downstream task. Different

goals can be achieved with the created embeddings, it can be used to infuse them with

context information of surrounding data or to compress the amount of data that is used

to describe the same information. The encoder component can be frozen during fine-

tuning.
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Decoder

The decoder uses the embeddings created by the encoder to produce predictions for

the downstream task. It can be as simple as a single fully-connected feedforward layer

or something more complex, depending on how effective the encoder is in creating

valuable features for the downstream task.

Figure 2.4: Left — pre-training setup, right — fine-tuning setup
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3. Data

Nanopore sequencing DNA data consists of a large number of reads that each span

some region of the genome. The lengths of the reads start from around 500 bp and

can reach up to 2.2 Mbp [25], but are typically in the 10 kbp order of magnitude. The

chemistry of the data used in this thesis is R9.4.1.

3.1. Raw Data

The format that is used for storing nanopore reads is called FAST5, which is based on

the HDF5 format. The HDF5 format is a generic format for storing large amounts of

data in a hierarchical structure (HDF - Hierarchical Data Format). The data is struc-

tured using two types of objects: groups and datasets. Groups are container objects that

can hold datasets and other groups. Datasets are multidimensional arrays of a defined

type. There are also attributes that contain metadata and can be assigned to groups

and datasets. The format can be compared to a file-system organization where groups

function as folders and datasets function as files.

FAST5 takes these concepts and limits the format to a defined, fixed structure.

There are two basic types of FAST5 files: single-read files that contain only a single

read per file and multi-read files that can contain multiple reads per file. The FAST5

files can contain raw sequencing data stored in the Raw group, event-level data, and

base-level data stored in the Analyses group. For basecalling uses, the Raw group con-

tains the input data for basecalling and the base-level data can be added after basecall-

ing. The raw signal data consists of electric current measurements in pA sampled at a

certain rate (usually 4000 Hz), which are scaled and discretized before being stored as

16-bit integers under the Signal key. The reads also come with useful attributes like the

duration of sequencing expressed in the number of samples, electric current median be-

fore the read, unique read ID, read number, multiplexor start settings, sequencing start

time expressed in the number of samples. For each read, there are additional groups

that contain more metadata about the read. The channel_id group contains the follow-
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ing set of attributes: channel_number. digitization, range, offset, sampling_rate. This

group is important as it contains information needed to transform the signal from the

discretized representation back to the continuous representation: digitization, range,

and offset. The transformation is calculated with the following formula:

scale = range/digitization

current = scale · (Signal + offset)[pA]

HDF5 data can be viewed with HDFView and an example of a single-read FAST5

file can be seen in Figure 3.1.

(a) FAST5 structure (b) signal data

(c) read metadata (d) signal metadata (e) channel id metadata

Figure 3.1: FAST5 structure and contents

3.2. Training Data

To train a basecalling model we need labels alongside the raw signal data, and to get

those labels we need to basecall the raw signal because it’s completely impractical to

manually label the data. This means we need a basecaller to train a basecaller, making

this a kind of bootstrapping process. The way to do this, as described on ONT’s Taiyaki

GitHub repository [23], is to use some available basecaller (they propose Guppy) to

basecall the raw reads, map the basecalled reads to the reference genome and then

13



Figure 3.2: Training data structure

extract the ground truth for each sequence by taking the segment of the reference that

the read was mapped to. This will give us labels that are consistent across all reads.

The assumption here, I believe, is that either the reference was generated using those

reads, or the ground truth is obtained by doing consensus with the available reads after

mapping the reads to the reference genome, or maybe they decide to ignore the possible

small differences between the reads and the reference. Once we have obtained the

ground truth we need to align the signal and the ground truth, which is done by using

a pre-trained basecaller model. Alternatively, the alignment can be obtained with the

re-squiggle algorithm provided by Tombo [24].

Although the alignment is technically not needed for training basecaller models

that use CTC, practically, there is a need for this because the length of the signal

and the ground truth makes computations necessary for CTC more difficult due to the

quadratic complexity of those computations, and by aligning the signal and the ground

truth we can divide them into smaller chunks of data we can make those computations

more practical to execute.

There is an already prepared HDF5 dataset available from the authors of Bonito

which was used for training the model presented in this thesis. The dataset contains

around 12 GB of reads, ground truths, and their alignments. The alignment is repre-

sented as an array of integers where each base from the ground truth array maps to the

starting position of the alignment in the signal array indicated by the value stored at

the same index in the alignment array as the index of the base in question in the ground

truth array. See Figure 3.2 for a visualization of the described structure and Figure 3.3

for an example.
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(a) Batch sample from Bonito HDF5 dataset example

(b) Bonito dataset read metadata example

Figure 3.3: Training data example
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3.3. Used data

The data from Bonito was split into a training, validation, and test set, in a ratio of

80:10:10, but in the end this test set was not used. Instead, raw FAST5’s with a ref-

erence genome from Ryan Wick’s basecaller benchmark [35] were used for testing

purposes. Three different sets of reads were chosen from three different species: Acine-

tobacter pittii, Serratia marcescens, and Haemophilus haemolyticus. The raw FAST5s

are available at https://bridges.monash.edu/articles/dataset/Raw

_fast5s/7676174, and the reference genomes are available at bridges.mona

sh.edu/articles/dataset/Reference_genomes/7676135. Before be-

ing fed to the model, the data is preprocessed by normalizing it with the median and

median absolute deviation (MAD) as seen in Bonito.

medsignal = median(signal)

MADsignal = 1.4826 · median(|signal − medsignal|)

signalmedMAD =
signal − medsignal

MADsignal
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4. Methods

4.1. Model Architecture & Optimization

This section consists of a description of the entire model architecture across its com-

ponents and the optimization technique used to train the model with available hyper-

parameters in mind. The model architecture is designed around utilizing a pre-trained

encoder and using the CTC decoder and loss for fine-tuning.

4.1.1. Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [9] is an algorithm for producing neural

network outputs, and the algorithm is combined with a corresponding loss function for

training. The goal of the method is to solve the problem of modeling sequences with a

variable time component. An example of this would be ASR mentioned in subsection

2.1.2. With a fixed sampling rate, the number of data points in an audio signal that

corresponds to the same phoneme may vary depending on how fast it is spoken, which

is, as mentioned in that subsection, similar to basecalling data. For this reason, we

decided to use CTC in our model.

CTC gives us a way to map an input sequence X to an output sequence Y where

the lengths of both those sequences vary in length without aligning the sequences. It

does so by extracting a probability distribution over all possible sequences Y for a

given sequence X . This can then be used for inference by choosing the most likely

sequence, or it can be used for scoring the model given a known target Ygt.

Alignment

CTC works by implicitly creating alignments between the input and output sequences

without having that information at the input. The best way to describe this alignment

process is by visualizing these alignments. For our example, let our input be some

sequence of latent variables X = {x1, x2, x3, ..., x12}, or in a general case simply
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Figure 4.1: CTC alignment examples

inputs, and the output a sequence of bases GAT , or for the general case tokens. To

create a valid alignment we can assign a base to each element of the input and then

collapse the repeating bases into a single base so that the result is a valid alignment,

e.g. 2 × G, 7 × A, 3 × T . The big problem here is that we lack a way to represent

sequences where bases actually are repeated due to the collapsing step. To counteract

this, CTC introduces a new special token blank or ǫ which can be used to represent no

output at a time step or to separate repeating tokens that should not be collapsed. After

adding ǫ, one more step is added to decoding the output sequence from an alignment

and that is removing any remaining ǫ tokens. To summarise, an output token is assigned

to each input, repeating tokens are collapsed and ǫ tokens are removed. So if we have

again 12 inputs and a sequence of bases GAA then we would need to have blanks in the

alignment. For a visual representation of these examples check Figure 4.1. There are a

few things to note about these alignments. They are monotonic, moving one step in the

input sequence means either staying on the same step or moving one step in the output

sequence. The alignment relationship between X and Y is many-to-one, multiple

elements of the input sequence can be aligned to one element of the output sequence,

but not the other way around. This means that the length of the input sequence X must

be greater than or equal to the length of the output sequence Y .
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Loss function

The objective of CTC is to produce an output sequence Y given an input sequence X

by using probabilities at each time step to compute the probability of the entire output

sequence. More formally:

p(Y |X) =
∑

A∈V (X,Y )

T
∏

t=1

p(At|X).

In other words, the conditional probability of Y given X is a marginalization over

alignments A from a set of valid alignments V (X, Y ) whose probabilities are com-

puted from the product of probabilities at each time step t from the first time step t = 1

to the final time step T . Therefore, the model that uses CTC needs to compute the

probabilities for each output class at every time step. The output classes in basecalling

are y ∈ {ǫ, A, C,G, T}. To arrive at a loss function for CTC, the probability estimate

p(Y |X) is combined with the negative log-likelihood loss. When applied to the entire

dataset D:

LCTC =
∑

(X,Y )∈D

− log p(Y |X).

Computing the loss naively by going through all the alignments and computing

the probability of each of them and then summing them up can be very expensive

to compute with longer sequences due to the number of possible alignments. There

is an efficient solution using dynamic programming that makes use of computations

made for alignments that share the same prefix and merging the alignments that lead

to the same output at the same time step. To achieve this, the output sequence Y =

{y1, y2, y3, ...} is interspersed with ǫ: Y = {ǫ, y1, ǫ, y2, ǫ, y3, ǫ, ..., ǫ}. This is possible

because the sequences are equivalent since the ǫ are dropped after collapsing. Using

this, the dynamic programming solution can be formed as a matrix of probabilities

where each row corresponds to the element of Y expanded with ǫ and each column

represents a single time step like depicted in Figure 4.2, and the allowed transitions are

moving monotonically right and down-right with some additional rules.

In order to generate only valid alignments some cases need to be handled. Let

Y = {..., ǫi−1, yi, ǫi+1, yi+2, ǫi+3, ...}. Transitions occur one time step at a time, from

tj to tj+1. Case 1: when yi 6= yi+2, it is possible to transition to state yi+2 from states

yi, ǫi+1 and yi+2. Case 2: when yi = yi+2, it is possible to transition to state yi+2 from

states ǫi+1 and yi+2, but not yi because it would mean that one token denoted by yi and

yi+2 would be lost when collapsing repeats. Case 3: when transitioning to an ǫ, like
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Figure 4.2: DP matrix for an example with the expected output GATTA and an input with 9

time steps.

ǫi+1 here, it is possible to transition to it from yi or ǫi+1, but not ǫi−1 because then yi

would be skipped in the alignment. A visual of this example is in Figure 4.3.

Figure 4.3: DP matrix with indicated transitions and transitions of interest for mentioned cases.

Case 1) (A, t3), Case 2) (T, t5), Case 3) (ǫ, t8)

The algorithm performed on this matrix to compute the posterior probabilities of

each state at each time step in the valid alignments for the given label is the forward-

backward algorithm. The algorithm uses two passes, forward and backward, to com-

pute the total probability of a token at a time step. The forward pass computes the total

probability αt(s) from the first time step to time step t and token s. The backward
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pass computes the total probability βt(s) from time step t + 1 and token s to the last

time step. A single path probability is the product of elements in the path and all paths

are then summed for the total probability. See example in Figure 4.4 and following

equations:

α4(1) = p(ǫǫǫǫG) + p(ǫǫǫGG) + p(ǫǫGGG) + p(ǫGGGG) + p(GGGGG)
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When doing inference, two options are available: Viterbi search and beam search.

Viterbi search in this context is a greedy algorithm that simply picks the output with

the highest probability at each time step, i.e. argmax. Beam search offers a prediction

that is closer to the most likely output sequence by branching and keeping at most K

(beam size) output sequences with the highest probability up to that point. Increasing

the beam size produces a more likely output sequence, but it takes exponentially more

computation with the increase of the beam size.
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Figure 4.4: Forward-backward example for token at state s = 1 which is G, and time step t4,

or t = 4, giving the total probability of all paths going through G at t = 4.

4.1.2. Encoder

Before starting work on this basecaller model, we worked on a self-supervised model

for nanopore sequencing data with the idea that it will be used for different use-cases

that operate on nanopore data, among which is basecalling. The encoder component

architecture of the basecaller, therefore, follows what we did then, but can be swapped

out for a different one since we did not finish the self-supervised mode before starting

work on this basecaller.

Convolution

Since the input data is a 1D array of electric current values, we need to encode this

data into vectors. For this, we decided to use the 1D convolutional layers which are a

standard solution for encoding time-series data.

Convolutional layers typically operate on 2-dimensional data and are made up of

learnable parameters grouped into kernels or filters, 4-dimensional tensors whose di-

mensions correspond to the number of output channels Cin, kernel width KW , kernel

height KH , and the number of input channels Cout. In 1D convolutional layers the

input is 1-dimensional (the dimension often being called the time or temporal dimen-

sion) and so the kernels are 3-dimensional tensors with dimension Cin, K and Cout.

The layer is applied on a part of the input in the time dimension with a receptive field

K, but through all the input channels, thus acting locally in time. When applied, the

kernel is convolved (actually cross-correlated since the kernel is not flipped) with the
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Figure 4.5: 1D convolution with Cin = 1, K = 3, S = 1, Cout = 1. The elements of H are

the result of convolving the input X and the kernel W . Each element of H is computed as a

dot product, h1 = x1w1 + x2w2 + x3w3.

input by computing the dot product between the kernel and the input as it slides with

stride S over the input’s temporal dimension to cover all the positions. When training,

the network can learn kernels that activate when they detect some pattern that is useful

for producing desirable outputs.

The pooling layer is a layer without parameters that summarises local data by using

some reduction function like the maximum or the average and sliding over the input

just like the convolutional kernel.

The convolutional encoder is here referred to as the feature encoder. The feature

encoder architecture is designed to model increasingly complex features by increasing

Figure 4.6: 1D max pool with K = 2, S = 2 on Cin = 1, Cout = 1.
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Figure 4.7: GELU activation function GELU(x) = x · Φ(x), where Φ(x) is a Gaussian Cu-

mulative Distribution Function (CDF).

the channel size Cout and downsample the time domain using pooling layers to de-

crease the complexity of the next steps while controlling the receptive field with kernel

size K and stride S hyperparameters. The feature encoder consists of convolutional

layers and pooling layers with padding, batch normalization [13], and GELU activation

[12], and is described in Table 4.1.

Table 4.1: Convolutional feature encoder architecture

Layer # Kconv Sconv Cout Kmaxpool Smaxpool BatchNorm Activation

1 3 1 64 2 2 Yes GELU

2 3 1 128 2 2 Yes GELU

3 3 1 256 2 2 Yes GELU

4 3 1 512 1 2 Yes GELU

24



Figure 4.8: Transformer encoder architecture

Transformer

The main component of the encoder and the whole basecaller model is the Transformer

[32]. The Transformer architecture is based only on the attention mechanism and re-

placed the recurrent architectures for sequential models because it is simple and is eas-

ily parallelized as it does not rely on iteratively going through the input sequence and

holding a state. Transformers were quickly employed in Natural Language Process-

ing (NLP) tasks and Computer Vision (CV) tasks, replacing or aiding recurrent and

convolutional models, and have shown state-of-the-art performance in various tasks.

Originally, the Transformer consists of an encoder and decoder part, but in our case,

only the encoder part is used.

A single Transformer encoder layer consists of two sub-layers: the multi-head self-

attention and the position-wise feed-forward network. Each of those sub-layers has

residual connections and has layer normalization applied afterward. The encoder layer

is then repeated N times. The Transformer encoder architecture diagram is visualized

in Figure 4.8.

The attention mechanism works by taking in queries, matching them with keys,

and using corresponding values for outputs. Queries, keys, and values are represented

with vectors. The output of attention is a weighted sum of values whose weights
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Figure 4.9: Scaled dot-product attention diagram

are determined by the compatibility of the query and the key that corresponds to that

specific value. Concretely, the Transformer architecture computes the attention as the

scaled dot-product attention. The input to scaled dot-product attention are queries

and keys of dimension dk, and values of dimension dv. The dot product is computed

between all queries and keys and then scaled by
√
dk. To obtain the weights for the

weighted sum of values, a softmax function is applied. Masking the attention is also

possible if needed for padding or autoregressive models.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

To allow the model to learn different representations for the same data, the attention

is split into multiple heads of attention h by taking the input vectors for queries, keys,

and values, and projecting them into h linear projections of dimension dk, dk, and dv

with projection matrices W . Each of these heads then computes the attention function

independently and in parallel on the received projections. The attention outputs are

then concatenated and projected back to the desired dimension.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i , KWW

i , V W V
i )

26



Figure 4.10: Multi-head attention diagram

This formulation applies in general, but the differences can come from what is

considered as Q, K, and V in a particular case. For the encoder part, the attention is

also called self-attention because both the queries and key-value pairs are taken from

the same place, i.e. queries are made on the same sequence that key-value pairs are

taken from, which means that the keys and queries are the same vectors.

The second sub-layer, position-wise feed-forward network (FFN), consists of two

standard linear transformations with an activation function applied between the two

transformations. The first transformation changes the dimensionality to a specified

value and the second transformation changes the dimensionality back to the dimension-

ality the model uses. While the original Transformer uses a ReLU activation function,

we decided to use a GELU activation function.

Since the Transformer does not have ordering built into the architecture, the inputs

need to be modified to somehow contain information about their relative or global
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position in the sequence. This is done with positional encoding (PE) which can be

done in a multitude of ways, but the authors chose sine and cosine function positional

encoding and we decided to follow their decision here.

PE(pos,2i) = sin

(

pos

10000
2i

dmodel

)

PE(pos,2i+1) = cos

(

pos

10000
2i

dmodel

)

For our model, we used 10 transformer encoder layers with 8 heads, FFN dimen-

sion of 2048, 0.05 dropout, and GELU activation function.

4.1.3. Decoder

The decoder is attached to the encoder that can be pre-trained and can arbitrarily de-

crease the sequence length by downsampling the time domain. The bottleneck of CTC

requires that the length of the input sequence be greater than the length of the target se-

quence, if the downsampling in the encoder breaks that requirement, the decoder needs

to upsample back to a level that is acceptable for CTC. Since downsampling is bene-

ficial for the performance of the model due to the complexity of the transformer that

depends quadratically on the length of the input sequence, we decided to downsample

below the requirement and then upsample back.

Transposed Convolution

The method of choice for upsampling in the time domain was transposed convolution.

Transposed convolution offers a way to upsample with learnable parameters. It is an

operation that is similar to convolution but acts in the opposite direction. It can be

compared to the backward pass of the convolution. The output is calculated by taking

each element of the input and multiplying the kernel with it to produce a local output.

The stride acts in the output instead of the input. Padding can be applied to both the

input and the output.

The architecture used consisted of convolution and transposed convolution, batch

normalization, and GELU activation function and can be seen in Table 4.2.

Classification

To produce a classification a simple fully-connected feedforward layer is applied to set

the dimension to the number of classes in the output. The number of classes in the
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Figure 4.11: Transposed convolution example with 2 × 2 input, 2 × 2 kernel with stride 2

producing a 4× 4 output.

Table 4.2: Convolutional feature decoder architecture

Layer # K S Cout Transposed BatchNorm Activation

1 3 1 512 No Yes GELU

2 3 2 256 Yes Yes GELU

3 3 1 256 No Yes GELU

output for this basecaller model is 5: {ǫ, A, C,G, T}. During training, the CTC Loss

is applied to the log softmax of these outputs, and during inference, a decoding process

uses the softmax of these outputs to produce a likely output sequence.

4.1.4. Optimization

For training the model, we used the Adam [16] optimizer with decoupled weight de-

cay regularization [20]. Adam stands for Adaptive Moment Estimation and is one of

many iterative improvements done on previous optimization algorithms. It uses mov-

ing averages of gradients g as first moments m and squares of gradients g as second

moments v with decay factors β1, β2 ∈ [0, 1), step size α, and a small scalar value ǫ

for numerical stability to optimize parameters θ.
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mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt = θt−1 − α · m̂t√
v̂t + ǫ

Adam is a usual choice for initial experiments and can be replaced with Stochastic

Gradient Descent (SGD) with a tuned learning rate and scheduling later on if necessary.

For our experiments, we used an initial learning rate of α = 1e−4 with exponential

decay γ = 0.95, weight decay λ = 1e−5, moment decay factors β1 = 0.9, β2 = 0.999,

and numerical stability constant ǫ = 1e−8.

4.2. Evaluation

For validation and testing purposes an accuracy metric is defined using a pairwise se-

quence alignment tool. The tool I decided to use for sequence alignment for validation

during training is Edlib [29] and for testing, I used Minimap2 [18] since Edlib does

not have the read mapping functionality. The alignment is provided in the CIGAR

format as defined in [26] and specified in Table 4.3. The format specifies a string

that consists of a sequence of pairs of operations that need to be applied to transform

one sequence into the other and the number of times it is repeated consecutively, e.g.

2=1I3=2X5=3D1= would mean that to align two sequences, a query and a reference,

with the defined CIGAR string, we need to match the first two elements, insert an ele-

ment into the reference, match three elements, mismatch or change 2 elements, match

5 elements, delete 3 elements from the reference sequence and finally match 1 element.

Query: GATTTAGTGATTA---A

|| ||| ||||| |

Reference: GA-TTACAGATTACAGA
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The operations and their quantities are extracted from the CIGAR string provided

by the aligner, aggregated by summation through the entire sequence and the accuracy

metric is computed as follows:

Accuracy =
=sum

=sum + Isum + Xsum + Dsum
.

Table 4.3: Relevant CIGAR string operations specification

Op Description Consumes query Consumes reference

I insertion to the reference Yes No

D deletion from the reference No Yes

S soft clipping Yes No

= sequence match Yes Yes

X sequence mismatch Yes Yes

By using Minimap2 for testing the model in inference, we also had the information

of what percentage of the basecalled reads Minimap2 managed to map to the reference

sequence.
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4.3. Experiments

Blocks of Convolutions

We tried to use deeper convolutions in the feature encoder and transposed convolutions

in the feature decoder, but we did not find that having many convolutional layers helped

with the model accuracy.

Separable Convolutions

During the early stages, we used more convolutional layers and separable convolutions

provided a way to decrease the number of parameters, but as we moved the weight from

convolutions to transformers there was no longer a need for separable convolutions and

they no longer provided much use.

Residual Connections in Convolutions

Inspired by the success of Bonito [22], we tried using blocks of convolutional layers

with wide kernels with residual connections. As already mentioned in the first subsec-

tion, the model does not rely much on convolutions, but on the transformer part of the

model.

Classical Upsampling

After we settled on having most of the load on the transformer, we wanted to in-

crease the performance by reducing the sequence length at the transformer input, so

we needed a way to upsample due to the CTC input and target length requirements

mentioned in subsection 4.1.3. The first choice was a classical linear upsampling al-

gorithm which seemed to work, but was later replaced with transposed convolution to

provide more capacity for the model.

Nyströmformer

Another way to alleviate the problem with the transformer’s computational complexity

is to try and use approximations that reduce the complexity. A method that does that

successfully and reduces the complexity to linear complexity in the length of the input

sequence is the Nyströmformer [37] which uses a Nyström-based algorithm to approx-

imate self-attention. Unfortunately, the publicly available implementation I found re-
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quired too much GPU memory for some reason and I did not manage to find a solution

for that issue so we proceeded with a standard transformer.

ReZero

To help the model converge faster, we tried using ReZero [1], a variation of a trans-

former architecture with gated residual connections using a single zero-initialized pa-

rameter. This is supposed to give faster convergence when training deep models, but

we found no improvement in convergence speed when applied to our architecture.

Chunk Size

Since we can’t train on full-length reads because they are too long when considering

the computational complexity and inefficient batching due to varying lengths of reads,

we divided the data into chunks. Chunk size could only be increased to a limited size

due to the restricted cuDNN CTC loss implementation that limits the length of the

target sequences to 256. Taking the average 9 measurements/bp we see that the chunk

size limit should be around 2304, but since the ratio between the signal and the actual

sequence varies, the lower bound is in reality significantly lower, e.g. when using a

chunk size of 2048, the implementation raised an error. For this reason, we stuck with

a chunk size of 1024.

Hyperparameter Optimization

After settling on the architecture, I ran a hyperparameter optimization using Bayesian

optimization on a pre-defined ranges and sets of values. Bayesian optimization con-

structs a probabilistic model that iteratively evaluates hyperparameter configurations

using an objective function or metric and updates the probabilistic model to maximize

the set objective [36]. The optimization balances exploring the hyperparameter space

and finding the optimum hyperparameter configuration. The optimization was done

using the Sweep functionality from Weights & Biases. It also provides a nice visual-

ization of the whole search shown in Figures 4.12, 4.13, 4.14.
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Decoding

There are two methods for decoding CTC outputs: Viterbi search and beam search as

described in subsection 4.1.1. Both options were tested and beam search showed no

significant improvement from Viterbi search while being much slower, so Viterbi is the

method of choice for decoding.

Stochastic Weight Averaging

The used framework offers the Stochastic Weight Averaging (SWA) [14] functionality

that can improve generalization with a negligible cost. No detailed testing was done

to see if this was true in our case, but since it does not affect performance, it was used

during training.

Figure 4.12: Sweep chart showing the used hyperparameter configurations and their respective

validation metrics.
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Figure 4.13: Computed correlations and importances of individual hyperparameters on the

validation accuracy metric.

Figure 4.14: Computed correlations and importances of individual hyperparameters on the

validation loss metric.
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5. Implementation

5.1. AttentionCall

Using the methods described in this thesis, a command-line implementation called At-

tentionCall was developed. The implementation consists of dataset definitions, data

preprocessing, module and architecture definitions, model optimization, model check-

pointing, logging, and basecalling inference. AttentionCall offers a range of config-

urable options and hyperparameters for training. It also supports multi-GPU train-

ing. The implementation is available on GitHub on the following repository URL:

https://github.com/StanislavPavlic/attentioncall.

Before starting work on this thesis, I was in a group project with my colleagues

Sanja Deur and Rafael Josip Penić as part of our university’s master’s programme

course "Project" where we worked on a self-supervised model that would create em-

beddings for nanopore sequencing data which would be used in multiple downstream

tasks, including basecalling. Throughout the project, we tried different approaches and

tasks to train the model inspired by other successful methods such as wav2vec 2.0 [2],

BERT [6], and O3N [8] but struggled to find a method that works for our data. After

the project ended, we each went on to work on our assigned tasks. Rafael continued

working on the self-supervised model, Sanja started working on modified base detec-

tion, and I started working on the first downstream task for our self-supervised model.

Unfortunately, I didn’t get to utilize a pre-trained self-supervised model but instead

trained directly on the downstream task from scratch.
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5.2. Libraries, Frameworks, Dependencies

AttentionCall was implemented in Python using PyTorch, an open-source machine

learning library with automatic differentiation. PyTorch offers implementations of

many layers, loss functions, optimizers, and most things commonly used in machine

learning. In addition to PyTorch, we also used PyTorch Lightning, an open-source

library that offers a high-level interface for PyTorch and ready-made implementations

for useful things like training and validation loops, device management, logging, de-

bugging, and checkpointing. Other used software:

– Weights & Biases (wandb.ai)

• experiment tracking

– Edlib (github.com/Martinsos/edlib)

• sequence alignment

– Minimap2 (github.com/lh3/minimap2)

• sequence mapping and alignment

– fast-ctc-decode (github.com/nanoporetech/fast-ctc-decode)

• CTC decoding

– ont-fast5-api (github.com/nanoporetech/ont_fast5_api)

• FAST5 file interface
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6. Results

6.1. Training

The model was trained for 50 epochs on 4 Tesla V100 GPUs. It achieved 94.46% accu-

racy on the validation set and the model seemed to have converged. The training loss,

validation loss, and validation accuracy throughout training can be seen in Figure 6.1.

The used model checkpoint is available at api.wandb.ai/artifactsV2/gcp-

us/spavlic/QXJ0aWZhY3Q6MTE3MjUyMzk=/84f78a7c45e6395fee7c9

97d7a44204a.

(a) Training loss (b) Validation loss

(c) Validation accuracy

Figure 6.1: Metrics tracked through training

38



6.2. Comparison

To evaluate the model, two other basecallers were chosen to compare them: Guppy

v4.4.2 and Bonito v0.2.0. A thing to note, this is an older version of Bonito that used

the modified QuartzNet [17] architecture, but there are newer versions that use RNNs

and Conditional Random Fields (CRFs) that have much better accuracy and were not

used in this comparison. This was because I had issues with either dependencies or re-

source limits with newer versions. Unfortunately, Guppy and Bonito were not retrained

on the same dataset that AttentionCall was trained on, so it is an unequal comparison

of their performances. To test the basecallers, they were run on three different datasets

from Ryan Wick’s benchmark [35] data collection that has raw FAST5 files and their

corresponding references: Acinetobacter pittii, Serratia marcescens, and Haemophilus

haemolyticus. Testing was done on a single RTX 2080 with 11 GB of memory.

When looking at computational performance in Table 6.1, Guppy is the obvious

winner. This is because it is well optimized and parallelized. Bonito and Attention-

Call are relatively close when it comes to speed. AttentionCall was not optimized for

inference, it handles each read individually which means there are a lot of incomplete

batches being used and it is not parallelized. This can be seen by the amount of unused

GPU memory that can be utilized. The input data is read into RAM at once and held

there for the duration of basecalling. This is visible in the relatively large amount of

RAM that it uses.

Table 6.1: Basecaller performance comparison for Acinetobacter Pittii

Basecaller Time [s] RAM [GB] GPU Mem [GB] Chunk Size

Guppy 93.43 2.1 9.6 2,000

Bonito 1,297.24 2.3 10.9 4,000

AttentionCall 1,448.81 7.8 2.8 1,024

When looking at read accuracy in Table 6.2, Guppy and Bonito are close with

Guppy being better on A. pittii, slightly better on S. mercescens, and Bonito being

slightly better on H. haemolyticus. AttentionCall is not far behind, but the other two

are significantly better. Again, it is good to note that recent evaluations show that

Bonito has improved performance in the newer versions and is better than Guppy when

it comes to accuracy [28].

Another measure that can be looked at to evaluate a basecaller is majority-rule con-

sensus accuracy shown in Table 6.3. This is done by creating a consensus sequence
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Table 6.2: Read accuracy comparison for different organisms

Basecaller A. pittii S. mercescens H. haemolyticus

Guppy 93.03 92.16 91.02

Bonito 92.58 92.07 91.22

AttentionCall 90.09 89.48 88.18

from overlapping reads at the same genomic location and measuring the identity as

described in [35]. The consensus accuracy for AttentionCall on H. haemolyticus is

missing because Rebaler failed to generate a consensus due to an unknown issue. Con-

sensus was created using Rebaler also mentioned and used in [35].

Table 6.3: Consensus accuracy comparison for different organisms

Basecaller A. pittii S. mercescens H. haemolyticus

Guppy 99.97 99.93 99.85

Bonito 99.96 99.94 99.91

AttentionCall 99.85 99.83 -
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(a) Per-read accuracy distribution for Guppy.

(b) Per-read accuracy distribution for Bonito.

(c) Per-read accuracy distribution for AttentionCall.

Figure 6.2: Per-read accuracy distributions
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7. Conclusion

The goal of this thesis was to develop a basecaller using deep learning with self-

supervised pre-training in mind. The developed basecaller shows solid performance

but lags behind the competition. The basecaller uses a simple architecture that includes

a convolutional feature encoder, a vanilla transformer, and a transposed convolution

feature decoder.

With modifications to the architecture with the input data structure in mind, the

model might be able to achieve better accuracy. CRFs have become popular recently

and have been shown to improve performance (which is what newer versions of Bonito

use). Label smoothing can be applied to improve accuracy. Another thing that could

perhaps be explored is using the detailed alignment of the signal and the ground truth

instead of just using it to chunk the data.

There is a lot of space for improvement in computational performance during in-

ference. It can be parallelized to increase the speed. It can be generalized to a group of

reads instead of individual reads when basecalling to decrease the number of incom-

plete batches and increase GPU utilization and efficient memory usage. The data can

be loaded from disk instead of holding all of it in RAM during basecalling. The vanilla

transformer could be replaced with a more efficient variation like Nyströmformer [37],

Linformer [33], or Performer [5], which would also help during training by decreasing

the training time.

To better understand how to improve the basecaller, it would be beneficial to an-

alyze the mistakes it makes by checking the distribution of errors by type (mismatch,

insertion, deletion). It would also make sense to see the accuracy for homopolymers.

Finally, acquiring more high quality data for training and evaluating would proba-

bly help the model to generalize and improve the model’s accuracy.

With more time and resources, the data can be explored further to obtain a better

understanding of the underlying structure, and more methods can be experimented with

to improve the accuracy and performance of the model.

42



BIBLIOGRAPHY

[1] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Gar-

rison W. Cottrell, i Julian McAuley. Rezero is all you need: Fast convergence at

large depth, 2020.

[2] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, i Michael Auli. wav2vec

2.0: A framework for self-supervised learning of speech representations, 2020.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, i Geoffrey Hinton. A simple

framework for contrastive learning of visual representations, 2020.

[4] S. Chopra, R. Hadsell, i Y. LeCun. Learning a similarity metric discriminatively,

with application to face verification. U 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05), svezak 1, stranice 539–

546 vol. 1, 2005. doi: 10.1109/CVPR.2005.202.

[5] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,

Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,

Lukasz Kaiser, David Belanger, Lucy Colwell, i Adrian Weller. Rethinking at-

tention with performers, 2021.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, i Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2019.

[7] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul

Peluso, David Rank, Primo Baybayan, Brad Bettman, Arkadiusz Bibillo, Keith

Bjornson, Bidhan Chaudhuri, Frederick Christians, Ronald Cicero, Sonya Clark,

Ravindra Dalal, Alex deWinter, John Dixon, Mathieu Foquet, Alfred Gaertner,

Paul Hardenbol, Cheryl Heiner, Kevin Hester, David Holden, Gregory Kearns,

Xiangxu Kong, Ronald Kuse, Yves Lacroix, Steven Lin, Paul Lundquist, Con-

gcong Ma, Patrick Marks, Mark Maxham, Devon Murphy, Insil Park, Thang

Pham, Michael Phillips, Joy Roy, Robert Sebra, Gene Shen, Jon Sorenson,

43



Austin Tomaney, Kevin Travers, Mark Trulson, John Vieceli, Jeffrey Wegener,

Dawn Wu, Alicia Yang, Denis Zaccarin, Peter Zhao, Frank Zhong, Jonas Ko-

rlach, i Stephen Turner. Real-time dna sequencing from single polymerase

molecules. Science, 323(5910):133–138, 2009. ISSN 0036-8075. doi: 10.1126/

science.1162986. URL https://science.sciencemag.org/content/

323/5910/133.

[8] Basura Fernando, Hakan Bilen, Efstratios Gavves, i Stephen Gould. Self-

supervised video representation learning with odd-one-out networks, 2017.

[9] Alex Graves, Santiago Fernández, i Faustino Gomez. Connectionist temporal

classification: Labelling unsegmented sequence data with recurrent neural net-

works. U In Proceedings of the International Conference on Machine Learning,

ICML 2006, stranice 369–376, 2006.

[10] Michael Gutmann i Aapo Hyvärinen. Noise-contrastive estimation: A new esti-

mation principle for unnormalized statistical models. Journal of Machine Learn-

ing Research - Proceedings Track, 9:297–304, 01 2010.

[11] Kui Han, Zhi-feng Li, Ran Peng, Li-ping Zhu, Tao Zhou, Lu-guang Wang,

Shu-guang Li, Xiao-bo Zhang, Wei Hu, Zhi-hong Wu, Nan Qin, i Yue-zhong

Li. Extraordinary expansion of a sorangium cellulosum genome from an

alkaline milieu. Scientific reports, 3:2101–2101, 2013. ISSN 2045-2322.

doi: 10.1038/srep02101. URL https://pubmed.ncbi.nlm.nih.gov/

23812535. 23812535[pmid].

[12] Dan Hendrycks i Kevin Gimpel. Gaussian error linear units (gelus), 2020.

[13] Sergey Ioffe i Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift, 2015.

[14] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, i An-

drew Gordon Wilson. Averaging weights leads to wider optima and better gener-

alization, 2019.

[15] Miten Jain, Hugh E. Olsen, Benedict Paten, i Mark Akeson. The oxford nanopore

minion: delivery of nanopore sequencing to the genomics community. Genome

Biology, 17(1):239, Nov 2016. ISSN 1474-760X. doi: 10.1186/s13059-016-

1103-0. URL https://doi.org/10.1186/s13059-016-1103-0.

44



[16] Diederik P. Kingma i Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[17] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii

Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, i Yang Zhang. Quartznet:

Deep automatic speech recognition with 1d time-channel separable convolutions,

2019.

[18] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformat-

ics, 34(18):3094–3100, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/

bty191. URL https://doi.org/10.1093/bioinformatics/bty191.

[19] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev,

Jonathan M. Cohen, Huyen Nguyen, i Ravi Teja Gadde. Jasper: An end-to-end

convolutional neural acoustic model, 2019.

[20] Ilya Loshchilov i Frank Hutter. Decoupled weight decay regularization, 2019.

[21] John P. McCutcheon i Carol D. von Dohlen. An interdependent metabolic patch-

work in the nested symbiosis of mealybugs. Current biology : CB, 21(16):

1366–1372, Aug 2011. ISSN 1879-0445. doi: 10.1016/j.cub.2011.06.051. URL

https://pubmed.ncbi.nlm.nih.gov/21835622. 21835622[pmid].

[22] Nanoporetech. Bonito, 2021. URL https://github.com/

nanoporetech/bonito.

[23] Nanoporetech. Taiyaki, 2021. URL https://github.com/

nanoporetech/taiyaki.

[24] Nanoporetech. Re-squiggle algorithm - tombo, 2021. URL https://

nanoporetech.github.io/tombo/resquiggle.html.

[25] Alexander Payne, Nadine Holmes, Vardhman Rakyan, i Matthew Loose. Whale

watching with bulkvis: A graphical viewer for oxford nanopore bulk fast5 files.

bioRxiv, 2018. doi: 10.1101/312256. URL https://www.biorxiv.org/

content/early/2018/05/03/312256.

[26] Samtools. Sam/bam and related specifications, 2021. URL https:

//github.com/samtools/hts-specs#sambam-and-related-

specifications.

45



[27] Florian Schroff, Dmitry Kalenichenko, i James Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. 2015 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), Jun 2015.

doi: 10.1109/cvpr.2015.7298682. URL http://dx.doi.org/10.1109/

CVPR.2015.7298682.

[28] Jordi Silvestre-Ryan i Ian Holmes. Pair consensus decoding improves ac-

curacy of neural network basecallers for nanopore sequencing. bioRxiv,

2020. doi: 10.1101/2020.02.25.956771. URL https://www.biorxiv.org/

content/early/2020/02/25/2020.02.25.956771.
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DNA Nanopore Sequencing Basecaller

Abstract

Nanopore sequencing is one of the state-of-the-art sequencing technologies. It

passes a DNA sample through a pore which changes the ionic current in the pore.

Due to the size of the pore, there are usually five nucleotides (5-mer) present in the

pore influencing the measured signal. Each of the 1024 possible 5-mers produces

a different signal, and this information is used for basecalling (converting the raw

signal to a sequence of nucleotides). The signal is approximately rectangular be-

cause the 5-mer changes one nucleotide at a time, but there is a lot of noise present.

The goal of this thesis was to develop a DNA nanopore sequencing basecaller us-

ing modern deep learning architectures with self-supervised learning in mind. The

architecture is mainly based on transformers. The basecaller was evaluated on pub-

licly available datasets. The solution called AttentionCall was implemented in Python

and the PyTorch library. The source code is available on GitHub at github.com/

StanislavPavlic/attentioncall.

Keywords: bioinformatics, basecalling, nanopore sequencing, deep learning, trans-

formers, CTC.



Metoda za pretvaranje signala dobivenog sekvenciranjem nanoporama u niz

nukleotida

Sažetak

Sekvenciranje nanoporama je jedna od vodećih tehnologija sekvenciranja danas.

Prolaskom DNA kroz poru mijenja se ionska struja koja teče porom. Uslijed veličine

pore, obilno se u pori nalazi 5 nukleotida (5-torka) koji utječu na mjereni signal. Svaka

od 1024 moguće 5-torke uzrokuje različit signal i ta informacija se koristi za odred̄i-

vanje baza (pretvaranje sirovog signala u slijed nukleotida). Oblik signala je pravoku-

tan jer se 5-torke mijenjaju po jedan nukleotid, ali je prisutan šum. Cilj rada je razvoj

nove metode za pretvaranje signala dobivenog sekvenciranjem nanoporama korišten-

jem suvremenih arhitektura dubokog učenja, pritom imajući na umu mogućnost ko-

rištenja samo-nadziranog učenja. Arhitektura se temelji na transformerima. Za eval-

uaciju su korišteni javno dostupni skupovi podataka. Rješenje je implementirano u

programskom jeziku Python uz korištenje PyTorch biblioteke. Izvorni kod je dostupan

na Github repozitoriju na github.com/StanislavPavlic/attentioncall.

Ključne riječi: bioinformatika, odred̄ivanje baza, sekvenciranje nanoporama, duboko

učenje, transformeri, CTC.


