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1. Introduction

In recent years, scientists are increasingly aware of the importance of the the field

of epigenetics, with more and more substantial advances being made. Epigenetics,

translated from Greek as "over the genome", studies heritable changes caused by the

activation and deactivation of genes without altering the underlying DNA sequence

(Elnitski, 2021). One’s epigenetics change with age, both as part of normal develop-

ment and in response to one’s behaviors (e.g. dietary options) and environment (e.g.

exposure to pollutants) (CDC, 2020).

DNA methylation, specifically 5-Methylcytosine (5mC) which is the most abun-

dant and biologically relevant type, is a normally occurring epigenetic modification

(KGaA, 2021). However, both hypermethylation and hypomethylation of 5mC at CpG

dinucleotides have been associated with various illnesses and health conditions, such

as tumors of all types, which was first confirmed to occur in human cancer in 1983

(Weinhold, 2006). Therefore, it is of great importance to conduct further research

about DNA modifications in order to improve understanding of cellular functions and

to devise appropriate therapeutic tools.

Lately, various tools for the detection of CpG methylation, dependent on the Ox-

ford Nanopore Technologies (ONT) sequencing, have been developed. Nanopore se-

quencing is a state-of-the-art sequencing technology which detects different electrical

current signals for different canonical nucleotides (A, C, T, G), whilst a DNA or RNA

strand passes through a nanopore. Then, basecalling, the process of translating this

detected signal into a DNA sequence, is performed (Wick et al., 2019). In addition,

Nanopore sequencing can be utilised for DNA modification detection, since signal

shapes of modified nucleobases differ from the unmodified ones (Yuen et al., 2020).

The aim of this thesis is the development of a deep learning method for DNA base

modification detection. Rockfish, one of the state-of-the-art methods based on a trans-

former architecture, is the backbone of the method developed in this work. Tombo’s

re-squiggle algorithm is a bottleneck in the Rockfish pipeline. Therefore, the main

idea is to replace Tombo with another faster tool whose task is to remap signal points
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at indels, a type of genetic variation in which a specific nucleotide sequence is present

(insertion) or absent (deletion), hence correcting basecalling errors. The tool has been

named Remapper, and it consists of two different approaches to resolving indels, later

on compared with original Rockfish implementation, as well as to each other.

The contents of this thesis are organised in the following manner. Chapter 2 gives

further details on biological concepts relevant to this work, as well as an overview of

prior work done in the field of DNA modifications, concentrating on the aforemen-

tioned Rockfish implementation. Furthermore, Chapter 3 includes a brief description

of utilised datasets and accompanying data analysis. In Chapter 4 the most important

methods used in the implementation are thoroughly described and illustrated. Chapter

5 outlines the implementation details, external dependencies, overall code structure,

and training procedure of the deep model. Chapter 6 presents comparison of results

obtained by this implementation versus the original Rockfish implementation, offers

a short discussion, and thoughts on possible future improvements. Finally, Chapter 7

states the conclusion of this thesis.
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2. Background

This chapter contains biological background required for better understanding of the

topic of this thesis. Next, an overview of the most significant efforts in this field is

provided. At the end, goal of this thesis is formulated, alongside the differences in

approach from prior related work.

2.1. Biological background

Epigenetics, the study of heritable phenotypic changes which do not involve alterations

of the DNA sequence, plays a key role in gene activity and expression (Dupont et al.,

2009). Gene expression indicates when and how often proteins are produced from

the instructions within the genes. While genetic changes can alter which protein is

created, epigenetic changes decide whether the gene is expressed ("turned on") or si-

lenced ("turned off"). Types of epigenetic changes, that can interact with each other,

comprise DNA methylation, histone modification, and non-coding RNA-associated si-

lencing (CDC, 2020). DNA methylation, arguably the best known epigenetic process,

is going to be the topic of interest in the proceeding text.

DNA methylations, including 5-methylcytosine (5mC), 5-hydroxymethylcytosine

(5hmC), and N6-methyldeoxyadenosine (6mA), are introduced into a DNA molecule

by adding methyl or hydroxymethyl groups to nucleotides. 5mC methylation, one of

the most widespread and biologically relevant genomic modifications, is introduced by

biochemical addition of a methyl group (–CH3) at the fifth position of the pyrimidine

ring of cytosines, as shown in Figure 2.1 (Liu et al., 2019a).

5mC is enriched at CpG sites, regions in which a cytosine nucleotide (C) is linked

to a guanine nucleotide (G) by a phosphodiester bond (p). In mammals, the majority of

CpG cytosines are methylated. Nonetheless, CpG islands, promoter regions of DNA

which have higher concentrations of CpG sites, are free of methylation in normal cells.

Conversely, in cancer cells these CpG islands are overly methylated, thus silencing

the tumor-suppressor genes that should normally be expressed. This epigenetic abnor-
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mality happens early in the development of a tumor, therefore epigenetics can help to

detect cancers early on (Simmons, 2008).

Figure 2.1: DNA methylation (KGaA, 2021)

Both hypermethylation and hypomethylation of 5mC at CpG dinucleotides have

been shown to be associated with diseases. Except for tumors of almost all types,

cognitive dysfunction, and respiratory, cardiovascular, reproductive, autoimmune, and

neurobehavioral illnesses are linked with epigenetic mechanisms (Weinhold, 2006).

Epigenetics change as one ages, both as part of normal development and aging, as well

as in response to one’s behaviours (e.g. lifestyle and dietary exposures) and environ-

ment (e.g. different pollutants) (CDC, 2020).

Whole-genome bisulfite sequencing (BS-seq), the traditional method of 5mC de-

tection, converts cytosine to uracil, whereas 5mC is not influenced, therefore modified

and unmodified cytosine can be differentiated. Disadvantages of BS-seq include inabil-

ity to evaluate repetitive genomic regions by short-read sequencing (Liu et al., 2019a),

DNA degradation, and sensitivity to the reaction conditions (Yuen et al., 2020).

Oxford Nanopore Technologies (ONT) long-read sequencing is one of the state-of-

the-art sequencing technologies, which resolves obstacles present in previously men-

tioned bisulfite sequencing. As depicted in Figure 2.2 a DNA or RNA strand passes

through a membrane via a nanopore and changes its ionic current. Detected electrical

current signal, called the "squiggle", is the raw data obtained by an ONT sequencer.

Then, the basecalling of raw data takes place, converting the raw Nanopore signals into

the corresponding nucleotide sequence (Wick et al., 2019).

Moreover, it has been found that Nanopore sequencing can be used to detect DNA

methylation (Ni et al., 2019), since the base modifications can be detected by their

unique signal shapes, which differ from the equivalent unmodified base (Yuen et al.,

2020).
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Figure 2.2: Oxford Nanopore sequencing (He et al., 2021)

The electrical resistance of a pore is determined by the number of nucleotides in

the pore which is approximately five nucleotides per pore (5-mer), resulting in a large

number of possible states: 45 = 1024 for the basic four nucleotides, and 55 = 3125

when 5mC modification is present. In addition, taking into account that signals come

from single molecules, hence producing noisy and stochastic data, basecalling is con-

sidered a challenging task (Wick et al., 2019). All of the modern basecallers use neural

networks, such as the one that is going to be used in this thesis and described in the

upcoming chapters, called Guppy.

2.2. Related work

In recent years, multiple tools have been developed in order to predict the existence

of methylation at CpG sites from Nanopore signals. They can be divided into three

categories: statistical tools, tools based on the hidden Markov model, and deep learning

tools.

NanoRaw (Stoiber et al., 2016), NanoMod (Liu et al., 2019b), and Tombo1 belong

to the group of statistical tools. Testing-based tools can detect any chemical modifi-

cation without the need for prior training data. NanoRaw and NanoMod require two

1https://nanoporetech.github.io/tombo/tutorials.html
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groups of reads, one from a sample with modifications and the other from a matched

unmodified control sample, alike Tombo that needs only modified samples for modi-

fication detection. On the one hand, in NanoRaw’s implementation Mann–Whitney

U-test combined with Fisher’s method is used. On the other hand, NanoMod re-

places Mann–Whitney U-test with Kolmogorov–Smirnov test, and Fisher’s method

with Stouffer’s method, thus improving performance. Lastly, the basis of the Tombo

framework is its re-squiggle algorithm which defines a new assignment from squig-

gle (raw Nanopore signal) to reference sequence based on an expected current level

model, since basecalling may contain some errors compared to a reference sequence.

Afterwards, modified base detection takes place, using different statistical tests.

SignalAlign (Rand et al., 2017) and Nanopolish2 use hidden Markov model (HMM)

for modification prediction. SignalAlign is a generative model which is consisted of a

variable-order hidden Markov model (HMM) combined with a hierarchical Dirichlet

process (HDP) used to learn ionic current distributions, referred to as an HMM-HDP

model. Nanopolish uses HMM to compare likelihoods of both modified and unmodi-

fied k-mers, nucleotide strings of length k, which contain at least one CpG site. If there

is more than one CpG present in a k-mer, only a k-mer level prediction is done.

Some of the most popular deep learning approaches are the following: Guppy3,

DeepMod (Liu et al., 2019a), DeepSignal (Ni et al., 2019), DeepSignal24, Megalodon5,

and, lastly, Rockfish6 whose implementation is given in its own section (Section 2.3)

because of its importance for this thesis. Guppy is used for basecalling the raw signals

in this thesis, and described in more details in Subsection 5.1.1. DeepMod is a pure

LSTM model, whereas DeepSignal combines LSTM and CNN architecture. DeepSig-

nal2 is a much smaller deep learning model in size, and it achieves slightly better

performance in 5mCpG detection of human data, than the original DeepSignal. Last

but not least, Megalodon performs basecalling exactly as in Guppy, performs reference

anchoring using Mappy which is also used in this thesis, and explained in Subsection

5.1.2. However, Megalodon resolves indels (insertions and deletions) simply by as-

signing signal points to the previous nucleobase, alike the methods developed in this

work (consult Section 4.1 and 4.2).

Currently, DeepSignal2 and Megalodon are state-of-the-art modification detection

tools, whilst Rockfish is still in the development, but already shows promising results.

2https://nanopolish.readthedocs.io/
3https://community.nanoporetech.com/protocols/Guppy-protocol/
4https://github.com/PengNi/deepsignal2
5https://github.com/nanoporetech/megalodon
6https://github.com/lbcb-sci/Rockfish
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2.3. Rockfish

Rockfish7 is a deep learning method for detecting DNA base modifications from Nano-

pore signal, developed by my supervisor Dominik Stanojević. The method can be used

for several different tasks, such as read-level and genomic-level 5mC modification

detection, cross-dataset generalization, and bisulfite sequencing. Rockfish has been

tested on sequenced Escherichia coli Repli-G/M.SssI data and NA12878 human data,

described in more details in chapters 3.1 and 3.2, respectively. The testing shows that

Rockfish achieves state-of-the-art results, or at least comparable performance, as the

methods described in Section 2.2.

The Rockfish code consists of the following three parts:

1. extract features

2. train

3. inference

Figure 2.3 illustrates Rockfish pipeline which is composed of four parts. First,

Nanopore reads are basecalled using Guppy basecaller, in order to infer nucleobase

sequence from the raw signal.

Next, Tombo’s re-squiggle algorithm is used to map basecalled reads to the given

reference using Minimap2 (Li, 2018), and to map signal points to the reference, thus

correcting possible basecalling errors.

Third step is feature extraction using event table which is the output of re-squiggle

algorithm. For every read, CpG motifs must be found, whilst taking care of alignment

strand (forward and reverse), thus obtaining CpG regions of 17 nucleobases, because

the window parameter is set to 8 by default, as shown in Figure 2.4. It is also possible to

change the motif, which is "CG" by default, and central position index, which defaults

to zero, thus respresenting the nucleobase "C". For example, motif "AATG", index 2,

and window 7 might be provided, meaning that the nucleobase "T" is in the center, and

length of the region equals 15. Nucleobases in the said regions get 20 signal points

sampled from the corresponding event. If an event is longer than 20 points, some of

the signal points are removed, and if it is shorter than 20 points, some of the points are

repeated. The resulting signal vectors have exactly 340 elements, and they are stored in

a binary file, together with event lengths, sequences of 17 nucleobases, and labels. La-

bels are provided for synthetic datasets, but for native ones need to be determined from

7https://github.com/lbcb-sci/Rockfish
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bedMethyl file, containing per-site coverage and methylation percentage, as depicted

in Figure 2.3.

Figure 2.4: An example of CpG region, window = 8

Finally, the model is trained on the aforementioned binary file, in addition to en-

coded nucleobase vector, which is attained by assigning different integers to different

nucleobases in the relevant region. The length of these vector should be 340 such as

the signal vector, which is achieved by repeating each label 20 times, hence mapping

20 signal points to every nucleobase. The Rockfish model consists of encoder net-

work and transformer module, and it outputs modification probability for the given

CpG region. The encoder network is used to build latent representations of the in-

put region, and to increase latent dimension for every timestamp. The encoder has

three convolutional blocks, comprised of one-dimensional convolutional layer, GELU

activation function (Hendrycks i Gimpel, 2016) and instance normalization (Ulyanov

et al., 2016). Further on, data is processed using transformer module, i.e transformer

encoder and decoder. The transformer encoder is equivalent to the encoder defined in

(Vaswani et al., 2017). Furthermore, the transformer decoder consists of global av-

erage pooling operation which reduces sequence dimension and a linear layer which

outputs logit value, i.e. the wanted modification probability.

Inference takes trained model checkpoint file and re-segmented fast5 files as input,

and outputs the modification probability for relevant CpG regions, alongside with a few

other important information, such as contig, read name, alignment strand, and position

of the central nucleobase (C) in the reference. The last output value is the predicted

modification label, which equals 1 if the logit value is greater than 0, meaning that the

modification occurred, and zero otherwise, which means there is no modification.

8



Figure 2.3: Rockfish pipeline
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3. Dataset

This chapter gives a brief description of datasets used in this thesis, Escherichia coli

and Homo sapiens data. Moreover, data analysis, crucial for the subsequent chapters,

is provided. The detailed data analysis is crucial, since it helps whilst making decisions

on what algorithms to implement, what parameters to use, and what thresholds to put.

3.1. Escherichia coli data

Escherichia coli strain K12 MG1655 has been kindly gifted to us by Dr. Swaine Chen’s

laboratory in Genome Institute of Singapore, A*STAR, Singapore. The modifications

on the genomic DNA obtained from the grown E. coli were eliminated using REPLI-g

Mini Kit. Afterwards, the resulting whole genome amplified sample was treated with

M.SssI methyltransferase. The obtained synthetic E. coli data is primarily used for

the data analysis, since it is known which reads are modified. For that purpose, 1,000

modified and 1,000 unmodified reads are examined.

The reference genome has been downloaded from NCBI (National Center for Biotech-

nology Information) GenBank under accession number NC_000913.3. There is a total

of 346,793 CpG sites in the reference genome.

3.2. Homo sapiens data

NA12878 Homo sapiens native dataset (Jain et al., 2018) has been obtained from Eu-

ropean Nucleotide Archive under acession number PRJEB23027. Human genome as-

sembly GRCh38 (Schneider et al., 2017) was used as the input reference for data ex-

traction. Bisulfite sequencing used as a ground truth for NA12878 data was acquired

from ENCODE Project (Consortium et al., 2012) under accession number ENCFF835NTC.

The described human dataset consists of 406,821 reads in total, mapped to the

chromosome 21 and 22. The data is partitioned into training, validation, and test set

by 80%, 10%, and 10%, respectively, as can be seen in the Table 3.1.
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Table 3.1: Distribution of Homo sapiens data

Chromosome Training Validation Test

chr21 176,040 22,005 22,006

chr22 149,416 18,677 18,677

Total 325,456 40,682 18,677

For training the model only the high-confidence CpG positions, i.e. the positions

which have at least 10 mapped reads, are included. This definition is in the accordance

with DeepSignal (Ni et al., 2019). Furthermore, only the positions with unambiguous

methylation are considered, meaning that the position is labeled as unmethylated if the

methylation frequency is 0%, whereas it is labeled as methylated if the frequency is

100%. The final outcome is 5,084,927 unmethylated and 6,211,372 methylated high-

confidence CpG positions.

3.3. Data analysis

The mentioned synthetic Escherichia coli dataset was thoroughly examined and anal-

ysed, taking into consideration if the reads are modified or unmodified. The native

NA12878 human dataset is very large, and is not clearly separated according read

modification, thus it is not analysed in this section.

A large number of different analyses has been made, however, only the most im-

portant ones are presented in this thesis. In Subsection signal lengths are plotted and

commented. Subsequently, in Subsection alignment between reference and queries,

i.e. basecalled reads, is explored and the most important findings written down. At

last, start index of raw signals is analysed, compared against the end of the signal, and

plotted in Subsection .

The data analysis is important because it points us in the right direction regarding

the selection of methods to implement, what exactly to keep in mind while coding

them, on which values to set the parameters, etc.

3.3.1. Signal length

This subsection briefly gives raw signal lengths of 1,000 modified and 1,000 unmodi-

fied E.coli reads, presented in Figure 3.1. It can be observed that a lot of unmodified
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reads have shorter signal lengths, and then also a few of them have extremely long

signal lengths, around 500,000 to 600,000 signal points. On the contrary, modified

reads’ signal lengths are distributed more evenly, mostly below 150,000, and with a

maximum value below 400,000.

Figure 3.1: Distribution of raw signal lengths for modified vs. unmodified reads

3.3.2. Alignment

Alignment is obtained by mapping basecalled reads to the reference, and it is consisted

of the four following CIGAR operations: match, mismatch, deletion, and insertion.

The values in Table 3.2 are calculated as the amount of certain operation in alignment

divided by the length of alignment.

First two rows show the distribution of operations on all bases, from which it can

be concluded that alignments are pretty accurate, considering they have more than

90% of matches. It can also be seen that modified reads have less matches, and more

mismatches, deletions, and insertions. In conclusion, modified reads are harder to map

correctly, because, as their name states, they contain modifications.

Last two rows show the comparison of operations at CpG positions, i.e. if cytosine

is matched, mismatched, deleted, or inserted. We can conclude that modified reads

once again have less matches, more mismatches and deletions, but, surprisingly, less

insertions. Therefore, inserted cytosine is not going to be considered as a modification

at CpG context. Reference anchoring is going to be implemented, and only the CpG

positions on the reference are going to be observed, as it is considered to be the ground

truth.
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Table 3.2: Average amount of CIGAR operations across the alignments [%]

Position Modification Match Mismatch Deletion Insertion

Any mod 91.177 3.217 3.295 2.311

nomod 93.867 2.260 2.403 1.470

CpG mod 92.310 4.841 2.338 0.510

nomod 96.007 2.601 0.857 0.535

After aligning basecalled reads to the reference using Mappy, we have noticed that

some reads do not yield any alignment. The further investigation was conducted, and

the findings were that 97.794% of reads with no alignments have mapping quality of

zero. In general, reads with lower mapping quality have either no alignment, or short

and quite incorrect one.

Based on the distribution of mapping qualities, shown in Figure 3.2, it is decided

to put the mapping quality threshold to 10, meaning that all alignments that have the

mapping quality below said threshold are discarded. It can be observed that Mappy

has done a pretty good job, because a vast majority of alignments have the maximum

mapping quality of 60. Lastly, the average mapping quality is, as can be expected,

higher for unmodified reads, because they have less mistakes as has been previously

shown in Table 3.2.

Figure 3.2: Mapping quality of alignments for modified vs. unmodified reads
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3.3.3. Start raw index

Start index of raw signals is the index at which the signal actually starts, that can be

noticed by a sudden peak in the signal amplitude. The assumption is that the first

N signal points before the mentioned peak have a small amplitude, and thus a small

standard deviation.

First, distribution of start raw indices may be seen in Figure 3.3 and it can be seen

that those indices are usually lower for unmodified reads. The reasoning behind that

might lie in the fact that unmodified reads are easier to basecall, therefore they have

smaller starting area with low amplitude, i.e. the real signal values start before than in

modified reads.

Figure 3.3: Distribution of start index of raw signals for modified vs. unmodified reads

In order to further explain the idea around the start raw index, the first and the last

1,000 signal points are drawn for one representative modified read, and one unmodi-

fied, as shown in Figure 3.4 and 3.5. It can be noticed that signal remains still until

the sudden start raw index peak, and then continues to deviate around the center value.

Furthermore, it can be concluded that there exists no such thing as an end raw index,

since the signal has larger amplitude until the very end of the read.
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Figure 3.4: The first and last 1,000 signal points for a representative modified read

Figure 3.5: The first and last 1,000 signal points for a representative unmodified read

We have also decided to look at the standard deviation of signal points before jump-

ing to any conclusions. As can be concluded from Figure 3.5 and 3.6, standard devi-

ation is close to zero until the abrupt appearance of start raw index for both modified

and unmodified representative read. Further on, the standard deviation diverges until

the very end of the signal, which confirms that there does not exist an end raw index.

Based on the findings in this subsection, it is decided to trim the signal, so it begins

from the start raw index until the end of the signal, thus obtaining only the relevant
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signal points.

Figure 3.6: Standard deviation of the first and last 1,000 signal points for a modified read

Figure 3.7: Standard deviation of the first and last 1,000 signal points for an unmodified read
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4. Methods

This chapter explains underlying concepts and algorithms necessary for the final Remap-

per implementation described in Chapter 5. Remapper is a tool developed for the sake

of replacing Tombo framework used in the original Rockfish code described in 2.3,

and hopefully to lower the overall execution time. After aligning basecalled reads to

the reference using Mappy, signal points at indels should be remapped, hence the name

Remapper. First, insertions are resolved as depicted in Section 4.1 using the Half-half

method (see Subsection 4.1.1). Next, as explained in Section 4.2, the deletions are

dealt with in one of the two possible ways, Concatenate and divide method (see Sub-

section 4.1.1) or Longer neighbour method (see Subsection 4.2.2). At last, Section 4.3

describes Binary writer, used for storing the extracted features into binary file, later on

used for training.

4.1. Resolving insertions

Insertions occur when a basecalled read contains a nucleobase, or several consecutive

nucleobases, which are not present in the reference at the same position in the align-

ment. The reference is considered to be the ground truth, and insertions to mainly be

mistakes made during the basecalling process. Therefore, it is necessary to remove

insertions and remap their signal points to the neighbouring bases. In order to do so,

the Half-half method, described in the succeeding subsection, has been developed. As

shown in Algorithm 1 the method takes alignment obtained using Mappy - "al", and

signal points intervals for the observed read - "raw", as inputs. For more details on how

the inputs are obtained consult second and third step of Remapper method in Section

5.2. The outputs are signal points intervals mapped to the reference, and intervals of

indices at which deletions have taken place, that facilitate future handling of deletions.
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Algorithm 1 Resolve insertions

1: function RESOLVE_INSERTIONS(al, raw)

2: cigar ← al.cigar if al.strand == 1 else reversed(al.cigar)

3: r_pos, q_pos← 0, al.q_st

4: r_len← al.r_en− al.r_st

5: intervals← [None] ∗ r_len

6: insertion← False

7: deletion_idx← []

8: for length, operation in cigar do

9: if operation in {0, 7, 8} then

10: if insertion then

11: intervals[r_pos]← (center, raw[q_pos].end)

12: insertion, length← False, length− 1

13: r_pos, q_pos← r_pos+ 1, q_pos+ 1

14: for i = 0 to length do

15: intervals[r_pos+ i]← raw[q_pos+ i]

16: r_pos, q_pos← r_pos+ length, q_pos+ length

17: else if operation == 1 then

18: ins_interval ← (raw[q_pos].start, raw[q_pos] + length].start)

19: center ← int(np.mean(ins_interval))

20: intervals[r_pos− 1]← (intervals[r_pos− 1].start, center)

21: insertion← True

22: q_pos← q_pos+ length

23: else if operation in {2, 3} then

24: deletion_idx.append((r_pos, r_pos+ length))

25: if insertion then

26: intervals[r_pos]← (center, raw[q_pos].start)

27: insertion, length← False, length− 1

28: r_pos← r_pos+ 1

29: for i = 0 to length do

30: intervals[r_pos+ i]← (raw[q_pos].start, raw[q_pos].start)

31: r_pos← r_pos+ length

32: return intervals, deletion_idx
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4.1.1. Half-half method

The thinking process behind the occurrence of inserted bases is that they should not

be present, and that they contain signal points which in reality belong to their neigh-

bouring bases. For that reason, the Half-half method deals with insertions applying a

simple heuristic of assigning half of their signal points to the left neighbour, and half

of their points to the right neighbour, as shown in Figure 4.1. If there is an odd number

of signal points, then the right neighbour gets one point more. For example, a total of

5 signal points would be divided into 2 and 3 points, and assigned to the left and right

neighbour, respectively.

Figure 4.1: Half-half method for resolving insertions

Algorithm 1 demonstrates pseudocode for resolving insertions using the Half-half

method. Input arguments are alignment obtained by aligning basecalled read to the ref-

erence using Mappy, and raw signal points that are written as intervals, from which the

exact signal point values are easily attainable. Start of mentioned intervals is inclusive,

whilst the end is exclusive.

Firstly, CIGAR operations and corresponding lengths are extracted from align-

ment, depending on the alignment strand. A few other variables are initialized, amongst

which the starting reference and query positions that are going to be crucial in the con-

tinuation.

Subsequently, we iterate through CIGAR, and check if an operation is match (or
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mismatch), insertion, or deletion, according to SAM format specification1. If the op-

eration is insertion (consult line 17 in Algorithm 1), insertion interval is found, taking

into account number of consecutive insertions, then the center index of mentioned

interval is remembered. The end index of left neighbour is set to the center index,

insertion flag is marked as True, and query position is updated depending on number

of insertions. Only the query position is updated because insertions are the type of

operation which consume query, i.e. they appear on the query, and are missing on the

reference.

Next, if the operation is match or mismatch (see line 9 in Algorithm 1), and the

insertion flag is set, i.e. insertion occurred in the last iteration, then the start index

of the current base is set to the remembered center index. Then, the insertion flag

is set to False, length of match operation is decreased by one, because the current

base is "resolved", and positions on both query and reference are incremented, which

concludes adjustment of the right neighbour. Then, remaining matches are resolved

by simply mapping the signal points intervals from query to reference. Matches and

mismatches consume both query and reference, thus both of the positions must be

increased by the length of the matches.

Moreover, handling of deletions can be seen at line 23 in Algorithm 1, which is

done in a similar fashion as the previously described matches, with the main differ-

ence lying in remembering deletion intervals essential for the following portion of the

Remapper implementation. Again, if the insertion happened in the last iteration, then

half of the insertion’s signal points are given to the deletion, i.e. the right neighbour.

The variables are adjusted similarly as for the matches, with the difference that only

the position on the reference is incremented, because deletions consume reference. Af-

terwards, or immediately if there were no previous insertions detected, the signal inter-

vals are assigned to deletions, but in a way that they get zero signal points, e.g. interval

(350, 350). If they have not gotten any signal points from possible insertions, deletions

enter the next phase with having assigned intervals, but containing zero points. Lastly,

the reference position is increased by the number of deletions.

Finally, signal intervals assigned to the reference with resolved insertions and dele-

tions written as empty intervals, together with a list of indices where the deletions

occurred, are returned as the output.

1https://samtools.github.io/hts-specs/SAMv1.pdf
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4.2. Resolving deletions

Deletions appear when reference contains certain nucleobases which are "deleted", i.e.

not present, in the basecalled read at the same positions in the alignment. This event

is considered to be the result of mistakes whilst basacalling the reads, because bases,

which should be a part of the sequence, are wrongly omitted and "contain zero signal

points". Those deleted bases should have certain amount of signal points, mistakenly

attributed to their neighbours. For this purpose, two methods for resolving deletions

are implemented and compared. One the one hand, there is Concatenate and divide

method, described in Section 4.2.1, which attempts to remap signal points from neigh-

bours to deletions uniformly. One the other hand, Longer neighbour method is created

and explained in Section 4.2.2, giving deletions signal points from the neighbour that

holds more of them. The Algorithm 2 presents the resolve deletions algorithm, which

takes outputs from the resolve insertions algorithm, and the type of deletion method

as the input. At the end, the algorithm outputs the resulting signal points intervals

remapped at indels and mapped to the reference.
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Algorithm 2 Resolve deletions

1: function RESOLVE_DELETIONS(intervals, deletion_idx, del_method)

2: for del_st, del_en in deletion_idx do

3: left← intervals[del_st− 1]

4: right← intervals[del_en]

5: if del_method ==′ concatenate_and_divide′ then

6: sig_st, sig_en← left.start, right.end

7: else if del_method ==′ longer_neighbour′ then

8: left_len← left.end− left.start

9: right_len← right.end− right.start

10: del_len← del_en− del_st

11: if left_len > right_len and left_len > del_len then

12: sig_st, sig_en← left.start, left.end

13: else if right_len > left_len and right_len > del_len then

14: sig_st, sig_en← right.start, right.end

15: else

16: sig_st, sig_en← left.start, right.end

17: points← np.array_split(range(sig_st, sig_en), del_en− del_st+ 2)

18: if len(points[−1]) == 0 then

19: while len(points[−1]) == 0 do

20: points.pop(−1)

21: interval ← points.pop(−1)

22: intervals[del_en]← (interval[0], interval[−1] + 1)

23: for i = del_st− 1 to del_en+ 1 do

24: if len(points) == 0 then

25: if i < del_en then

26: intervals[i]← intervals[del_en].start, intervals[del_en].start)

27: continue

28: interval ← points.pop(0)

29: intervals[i] = (interval[0], interval[−1] + 1)

30: return intervals
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4.2.1. Concatenate and divide method

Deletions are bases which exist on the reference, but are deleted on the basecalled

read, as shown in Figure 4.2, where "C" in the CpG context is modified, or more

precisely deleted, on the read. One of the possible heuristics to deal with that issue is

Concatenate and divide method, whose goal is to divide signal points between deletions

and their first neighbours uniformly. The signal points from left and right neighbour are

concatenated and divided into equal parts. If there exists a remainder whilst dividing

the points, quite the opposite from the aforementioned insertion resolving process, the

bases to the left get more points. For example, in Figure 4.2, 25 points shall be divided

to three bases, which is achieved in the following way: left neighbour gets 9 points,

deleted base gets 8 points, and, finally, 8 points are assigned to the right neighbour.

Figure 4.2: Concatenate and divide method for resolving deletions

The pseudocode for the Concatenate and divide method is given in Algorithm 2.

The inputs are signal intervals mapped to the reference already modified by the resolve

insertions method, intervals at which deletions occurred, and wanted deletion method.

The resolve deletions method begins with a for loop going through deletion intervals,
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and finding an interval for the left and right neighbour.

Next, signal start is defined as the start position of left neighbour, and the signal end

as the end position of right neighbour, thus concatenating necessary signal points. At

line 17 in Algorithm 2 points are divided uniformly between neighbours and deletions,

depending on the number of deletions.

The case where there is not enough signal points to divide amongst bases is covered

from line 18 to 22. This part of code makes sure that the right neighbour keeps at least

one signal point. It can be observed that the left neighbour always has at least one

point, at least one point is explicitly given to the right one, and deletions might have

zero or more points. For example, if left neighbour has one point, the right one two

points, and there are two deletions, then the points are given as follows: one to the left

neighbour, one to the first deletion, zero to the second deletion, and, lastly, one to the

right neighbour.

Finally, the program loops through the relevant positions on the reference and maps

points to them, more precisely it adjusts the signal interval start and end. If there are

zero signal points, then an empty interval is made, e.g. (350, 350). After the adjustment

of all deletion intervals, new signal point intervals is returned as the output.

4.2.2. Longer neighbour method

Concatenate and divide method might seem a bit unfair, in sense that it divides signal

points in a uniform way, disregarding the cases in which one neighbour has a lot more

points than the other. For instance, if there is one deletion, and one neighbour has 5

points, whilst the other has 85 points, is it fair to divide points as 30-30-30, taking

away a vast number of points from the latter neighbour? We have decided to analyse

the direct neighbours on the E. coli dataset (see Subsection 3.1), and based on the

results think about an implementation of an alternative method.

The first assumption is that the bases around deletions have more signal points

than those around matches. The reasoning behind that lies in the previously explored

thought that the basecaller has made a mistake in not detecting the deleted base, and

that it assigned its signal points to the one of the neighbours. Therefore, the deletion

should have probably been in the place where there are more signal points than the

average. The Figure 4.3 confirms the assumption that there are more signal points in

average around deletions than matches. It can be observed that matches have larger

values for 5 signal points, for 10 signal points values are similar, and for larger values,

deletions start to take over. Lastly, it can also be seen in the right figure that unmodified
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reads have larger values for smaller number of signal points, and modified ones take

over after 15 points. This can be interpreted in a way that modified reads have more

deletions at CpG positions.

Figure 4.3: Distribution of signal points around matches vs. deletions

Now that we have established that there are indeed more points around deletions

than usual, we can proceed to formulate the second assumption. It looks at the signal

ratio, i.e. the neighbour with less signal points divided by the neighbour with more sig-

nal points, which is a number between zero and 1. So, the second assumption, which is

the foundation of the Longer neighbour method, claims that the signal points from the

supposed deleted base have been assigned to the neighbour who now has more points.

We wonder how often the case that one neighbour has more points than the other hap-

pens. Also, we are interested in signal ratios, i.e. how many more signal points does
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the larger of two neighbours have. Ratios below 0.5 prove a large difference between

neighbours, for instance, ratio for opening example of 5 and 85 points is 0.0625. On

the contrary, ratios above 0.5 show a smaller difference between neighbours, whilst the

ratio equal to 1 means that the two neighbours have the same amount of signal points.

Figure 4.4 shows distribution of signal points ratios for E. coli reads, and interest-

ingly strongly confirms the aforementioned statement that modified reads have more

deletions than unmodified. Moreover, there are indeed a vast number of deletions with

ratios below 0.5 which arises the need for the alternative method which will take this

discovered fact into consideration. There is also quite a lot of cases with ratio equal

to 1, which can be covered with the previously implemented Concatenate and divide

method. Finally, the interesting fact is that one or two consecutive deletions prevail,

confirming that the basecaller works well, i.e. that it has not basecalled a lot of con-

secutive deletions.
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Figure 4.4: Distribution of signal points ratio for modified vs. unmodified reads

Longer neighbour method first compares the number of signal points of left and

right neighbour and decides which one is longer. Then, the signal points of the longer

neighbour are divided between the neighbour and the deletions in a uniform way, same

as in the Concatenate and divide method. For further explanation consult Figure 4.5

where the same starting example from Figure 4.2 is now resolved using the alternative

method.

There exist two edge cases, left and right neighbour having the same amount of

signal points, and not having enough signal points to divide between all the deletions.

The latter case is quite rare because there are mostly one or two consecutive deletions
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as proved above, and there are usually enough signal points to assign to them. Never-

theless, both cases are solved with Concatenate and divide approach.

Figure 4.5: Longer neighbour method for resolving deletions

The lines 7 to 16 in Algorithm 2 are key if we choose the Longer Neighbour ap-

proach. The number of signal points of left and right neighbour are compared. If one

neighbour is larger than the other, additionally we need to check if its number of signal

points is larger than the number of deletions, i.e. if it has enough points to cover all of

them. If both conditions are met, signal start and signal end are adjusted according to

start and end of that neighbour. Otherwise, signal start and signal end are set as before

and classic Concatenate and divide method is applied.

4.3. Binary writer

Binary writer in the original implementation writes signals of exactly 340 points in a

binary file, therefore offsets, used for random access of examples, are known. Now,

due to manual remapping, and removing the fixed sampling of 20 signals per base,
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signals of variable lengths must be successfully written. In order to do so, a certain

overhead shall be introduced, a header containing number of examples and lengths of

every example.

Every processor instantiates one object of Binary Writer class, which stores exam-

ples, i.e. extracted data for reads that are processed. Method write_data inside

Binary writer takes as inputs relevant data, label if the dataset is synthetic or BED

information if the dataset is native. The examples are structured in the following way:

– signal - array of raw signal points of variable length

– lens - lengths of the event intervals

– kmer - bases in the relevant region extracted from the reference (e.g. 17-mer

for motif "CG" and window equal to 8 shown previously in Figure 2.4) written

as integers (different integers are assigned to different bases)

– label - stored label, 0 or 1, for unmodified or modified example, respectively

If the dataset is synthetic, label is simple stored to the example, whereas if it a

native dataset, label is decided based on the modification frequency stored within BED

information. If modification frequency is larger than 50% label is 1, 0 otherwise.

Examples are stored one by one in temporary data.bin files, and lengths of every

example in bytes are stored in temporary header.bin files. There are as many temporary

files, as there are processors running in parallel.

Finally, on_extraction_finish method concatenates all temporary data.bin

files to one, and all temporary header.bin files to one, with first number in file repre-

senting total number of examples. Afterward, header.bin and data.bin are concatenated

into an unique data.bin file ready for training.

The data.bin file is structured as described above because first the total number

of examples is read determining how many integers representing the lengths of every

example must be read next. Then, lengths of examples are read and summed cumula-

tively in order to obtain offsets necessary for random access of examples whilst train-

ing. The examples are read when needed and can be accessed by index from which the

corresponding offset is calculated.
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5. Implementation

This chapter provides an overview of external dependencies used for the implementa-

tion presented in Section 5.1. Moreover, detailed code structure and implementation

details are given in Section 5.2. At last, Section 5.3 describes training procedure of the

deep model.

5.1. Dependencies

This section deals with external dependencies used for the final implementation. First,

it gives a short introduction to Guppy, method used for basecalling the reads (see Sub-

section 5.1.1. Next, Mappy, method used for aligning reads to the reference is outlined

in Subsection 5.1.2. Furthermore, in Subsection 5.1.3 PyTorch and PyTorch Lightning,

libraries commonly used for deep learning, are described. Lastly, Subsection 5.1.4 pro-

vides a brief overview of other libraries and tools used in this implementation.

5.1.1. Guppy

Guppy1 is a basecaller based on the RNN architecture that transforms raw FAST5

data into canonical bases of DNA or RNA. The Guppy toolkit also performs modified

basecalling (5mC, 6mA, and CpG) from the raw signal data, returning an additional

FAST5 file of modified base probabilities as the output.

In this implementation, Guppy basecall server is run on a certain port, using base-

calling of high accuracy and GPU mode, in order to obtain accurate basecalling at an

acceptable speed. Furthermore, ont-pyguppy-client-lib2 is a Python Guppy API, used

as a client which connects to the said server and basecalls given FAST5 reads.

Both Guppy basecall server and client shall have compatible versions, and in this

implementation version 4.4.2 is used.

1https://community.nanoporetech.com/protocols/Guppy-protocol/
2https://pypi.org/project/ont-pyguppy-client-lib/
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5.1.2. Mappy

Mappy3 is a Python API built on top of the Minimap2 (Li, 2018) implementation.

Minimap2 is a sequence alignment program which aligns DNA or mRNA sequences

against a large reference genome. In this implementation it is used for mapping Oxford

Nanopore genomic reads to the human genome, as well as E. coli reference.

5.1.3. PyTorch and PyTorch Lightning

PyTorch4 (Paszke et al., 2019) is an open source deep learning Python library used for

tensor computation with strong GPU acceleration, as well as building different deep

neural network architectures.

PyTorch Lightning5 is built on top of PyTorch and its main usage is organising

the training code, making it more readable, easier to reproduce, less prone to errors,

scalable to any hardware without changing the model, etc.

In this implementation, PyTorch is used to implement the deep model and perform

certain tensor calculations, whilst PyTorch Ligthning serves as a tool for organising

the training code.

5.1.4. Other dependencies

h5py6 is a Python interface to the HDF5 binary data format used to store huge amounts

of numerical data, and later easily manipulate that data. In the implementation FAST5

reads are stored in HDF5 files. Furthermore, ont_fast5_api7, a simple Python interface

to HDF5 files of the Oxford Nanopore. FAST5 file format, is used to handle those types

of files directly from Python code.

Other dependencies are listed here briefly, due to their familiarity and widespread

usage:

– NumPy8 - fundamental package for scientific computing in Python

– Biopython9 - set of tools for biological computation in Python

– Matplotlib10 - Python library used for visualisation

3https://pypi.org/project/mappy/
4https://pytorch.org/
5https://www.pytorchlightning.ai/
6https://www.h5py.org/
7https://github.com/nanoporetech/ont_fast5_api
8https://numpy.org/
9https://biopython.org/

10https://matplotlib.org/
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– tqdm11 - a fast, extensible progress bar for Python and CLI

5.2. Code structure

The whole implementation has been written in Python 3.7.10, with the help of the de-

pendencies described in the previous section. The code is written in an object oriented

matter and using multiprocessing to achieve comparable speed with the original im-

plementation. The code is publicly available under the MIT licence at the following

link: https://github.com/sanjadeur/master-thesis.

The code pipeline is shown in Figure 5.1 where it can be observed that the Tombo

framework present in the original Rockfish implementation (see Figure 2.3) is replaced

with the new Remapper tool. Besides the sole implementation, Remapper needs to be

successfully integrated into Rockfish pipeline. The biggest difference from the original

Rockfish code is the fact that signal vectors now have variable lengths, instead of their

length being fixated at exactly 340 signal points.

Unlike the original implementation which takes previously basecalled and re-segmented

reads as inputs, this implementation simply takes raw FAST5 reads.

Next, feature extraction begins with basecalling, continues with the Remapper tool,

and ends in the same way as before. The basecalling process is written completely

in Python using tools mentioned in 5.1.1. In order to avoid basecalling to become

a bottleneck in the pipeline, it is written using multiprocessing, using the producer-

consumer pattern. The number of producers and consumers, called processors in this

implementation, can be set as a parameter of the program. Processors are used to

basecall the input raw data and put processed reads into the queue. Then, processors

take basecalled reads from the queue, and further process them using Remapper, and

finally write them in a binary format. The program ends when the queue is empty,

meaning there are no more basecalled reads to further process.

11https://github.com/tqdm/tqdm
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Figure 5.1: Rockfish with Remapper pipeline
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Subsequently, an object of a class Remapper is instantiated and given as an ar-

gument to all the processors. Remapper consists of seven most important steps, as

follows:

1. find motif positions on the reference

2. align read to the reference using Mappy

3. convert sequence to raw signal

4. find relevant motif positions

5. resolve insertions

6. resolve deletions

7. extract relevant data

In the Figure 5.1 some of the steps above are omitted for the clarity sake but are

going to be thoroughly explained in the following text.

In the Remapper initialisation part Mappy aligner is instantiated, used for aligning

the read to the reference later on. Also, the positions of central base in the motif, for

instance "C" for the CpG context, are found on the reference, both for forward and

reverse alignment strand. If it is dealt with native dataset, then BED positions shall be

extracted, together with the alignment strand information. It is also possible to filter

the BED positions, leaving only the high confidence ones. The intersection between

found motif positions and allowed BED positions shall be made. Afterwards, the final

motif positions are stored into a variable in a dictionary format, keys being different

chromosomes, and values being a pair of two sets, one for forward strand, and one for

the reverse one.

Next step is aligning read to the reference, and getting the relevant motif positions,

in a way that it is observed which of the previously found motif positions are covered

by the alignment, i.e. also match position on the query.

Usually, after applying Tombo’s re-squiggle algorithm an event table is produced,

which contains a sequence of k-mers with reference to the interval in the raw signal.

With having Tombo removed from the pipeline, this event information must be ex-

tracted from basecalled data, output which is returned by Guppy. By applying certain

manipulations of the basecalled data12, raw signal intervals are obtained and given to

12https://community.nanoporetech.com/posts/mapping-of-signal-to-basec
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the resolve insertions method as an input, together with alignment obtained before with

Mappy. Alignment contains information about the start and end index of query, which

can then be used to retrieve the first and last signal interval corresponding to that nu-

cleotide sequence. Therefore, it is exactly known which signal points belong to which

nucleotides.

Steps 5. and 6. are not going to be explained into further details, because they have

already been examined in sections 4.1 and 4.2, respectively.

Finally, the program loops through the relevant positions and extracts important

information for each of them. The resegmentation data is structured in the following

way:

– position - central base position on the reference

– event_intervals - raw signal intervals mapped to the bases on the reference

– event_lens - lengths of the event intervals

– bases - bases in the relevant region extracted from the reference (e.g. 17-mer

for motif "CG" and window equal to 8 shown previously in Figure 2.4)

Even though, the remaining part of the pipeline looks the same as in the original

implementation, quite a lot of changes needed to be done in order for whole pipeline

to work correctly. First of all, Binary Writer is implemented as previously described

in Section 4.3 and it outputs data.bin, a binary file containing examples, i.e. extracted

data for relevant positions.

Training portion of the code can now easily read mentioned binary data file, be-

cause offsets are given in the binary header file. Additional changes must be made in

the training as well because signals differ in length. First, bases in the 17-mer should

be repeated based on event lengths, and not constantly 20 times as before. Secondly,

padding containing zeros must be added to the beginning and the end of the signal in

order to obtain same tensors. Signals which are too long are cut in a way that we keep

the middle of the signal. At last, convolutional layers should be adjusted based on

the new lengths (they are not always 340). After all of that successfully implemented,

modification probabilities can be again obtained as the final output of the pipeline.

5.3. Training procedure

The model is trained for 30 epochs in mini-batches of 256 examples, using the back-

propagation algorithm. Binary cross-entropy loss is used in order to measure the per-

formance of the model. For training, AdamW optimizer (Loshchilov i Hutter, 2018),
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which implements weight decay regularization for Adam algorithm (Kingma i Ba,

2014), and cyclic learning rate scheduler (Smith, 2015) are utilised. Learning rate is

cyclically changed between lower and upper boundary, which equal to 10-5 and 10-4, re-

spectively. After each cycle, upper bound is changed to half of the value of previous up-

per bound. One step size represents half cycle and is equal to × iterations_in_epoch

.
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6. Results

This chapter offers an overview of the obtained results divided into two parts, measur-

ing and comparing execution time for different methods, and comparing the accuracy

of methods. Later on, a brief commentary on the obtained results is given, as well as

the propositions for the future work in the field.

Table 6.1 summarizes specifications of the machine on which all of the tests have

been carried out.

Table 6.1: Machine specifications

Operating system Ubuntu 4.4.0-124-generic

Processor architecture x86_64

Processor Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GH

Number of cores 32

Number of GPUs 1

RAM 566GiB

The assumption, and the very goal of replacing the Tombo framework, is that the

runtime will be shorter than before. Tombo uses a more complex heuristic than those

developed in this thesis, hence the execution time should be greater, but for the same

reason, it is expected that the accuracy achieved with Tombo is higher than with the

Remapper tool. Nevertheless, we hope that heuristics developed in this thesis will yield

good enough accuracy, while at the same time lowering the runtime.

6.1. Runtime

Runtime is first measured for the original Rockfish code, including basecalling using

Guppy, re-squiggling using Tombo, and finally feature extraction. Secondly, runtime is

measured for the Rockfish code including Remapper which only has feature extraction
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step. The measurements are conducted three times and the average value is taken, since

there have been small differences across the measurements.

The results for E. coli dataset are presented in Table 6.2. Original Rockfish with

Tombo, Remapper with the first deletion method (Concatenate and divide), and Remap-

per with the second deletion method (Longer neighbour) are compared. Guppy runs

in the GPU mode and basecalling is done with 28 basecallers (parameter n_producers

in Remapper), for all of the methods. Furthermore, 4 processors (parameter workers

in Rockfish, and n_processors in Remapper) have been used to process the basecalled

reads in all of the cases. Lastly, bed_filter parameter is set to high_confidence, meaning

that only positions that have coverage of at least 10 reads and have all reads modified

or unmodified (modification frequency of 0% or 100%) are taken into consideration.

The remaining parameters are set to the default values. All of the measurements are

conducted on the same machine and with the same setting, thus achieving comparable

results.

Table 6.2: Runtime comparison for Escherichia coli dataset [sec]

Model Modification Guppy Tombo Feature extraction Total

Rockfish mod 19.173 53.393 81.043 153.609

nomod 20.323 58.520 89.270 168.113

Remapper - mod - - 25.237 25.237

del #1 nomod - - 30.757 30.757

Remapper - mod - - 25.640 25.640

del #2 nomod - - 27.287 27.287

Table 6.3 summarizes runtime results for NA12878 human dataset, which is a na-

tive dataset, therefore mod/nomod differentiation cannot be shown. The measurements

are obtained for the same methods and in the same conditions as described above for

E. coli dataset.
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Table 6.3: Runtime comparison for NA12878 human dataset [hh:mm:ss]

Model Guppy Tombo Feature extraction Total

Rockfish 03:23:25 17:03:18 00:39:09 21:05:52

Remapper - del #1 - - 04:01:08 04:01:08

Remapper - del #2 - - 04:01:29 04:01:29

6.2. Accuracy

In classification problem, accuracy means the fraction of predictions the model got

right. Or, more formally,

Accuracy =
1

N

N∑

i

1(yi = ŷi) (6.1)

where y is a tensor of target values, and ŷ is a tensor of predicted values.

Table 6.4 presents validation accuracy measured on the native human dataset. Data

is split in the way previously shown in 3.1. The accuracy is measured for original Rock-

fish implementation, for implementation which includes Remapper with Concatenate

and divide deletion method, and for the one with Longer neighbour deletion method.

Table 6.4: Validation accuracy comparison for NA12878 human dataset [%]

Model Accuracy

Rockfish 93.400

Remapper - del #1 82.107

Remapper - del #2 83.978

The training is performed on two data.bin files obtained as outputs of feature ex-

traction method for training and validation data. All of the parameters are set to the

default values.
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6.3. Discussion

The main goal of this thesis is to find a heuristic which would replace Tombo and

whose performance is similar to the original model, but the speed is improved. From

taking a glance at Table 6.2 and 6.3 it can be concluded that we have suceeded in the

latter. Remapper is faster than Rockfish in both of its implementations, regarding the

way of resolving deletions. All of the methods are slower for unmodified reads which

could possibly be attributed to them having longer signals in average (see Subsection

3.3.1). The difference in runtimes might not seem so drastic on 2000 E. coli reads,

but when the program is scaled for a large amount of data (406,821 human reads), the

difference in speed is indeed noticeable.

On the one hand, for the original Rockfish implementation data has to be read from

files and written back to files three times, once in the basecalling portion, once while

re-squiggling with Tombo, and lastly while performing data extraction. These opera-

tions are costly, and together with long runtime of the Tombo part, cause long overall

runtime. From Table 6.2 containing E. coli data it appears that feature extraction is the

slowest part, but in reality, when looking at Table 6.3 comprising a much bigger hu-

man dataset, it can be concluded that Tombo is the real problem, confirming the initial

statement made in introduction.

On the other hand, this thesis’ feature extraction implementation requires only the

raw data as the input, performs all of the work, and outputs resulting file ready for

training. This approach is faster, easier, and requires less storage, as there exist no

intermediate steps where files need to be stored. Moreover, reads which have mapping

quality below set threshold or no alignment is produced for them are discarded early

on in the program. Reads which do not contain any relevant regions, for instance if all

of them are filtered out using the bed_filter parameter, are also discarded.

In conclusion, runtime for the two Remapper variations are quite similar to each

other - differences are measured in seconds for both datasets, and may even be con-

tributed to slight deviations across the measurements. However, runtime for Remapper

implementation is 5 to 6 times faster than for the Rockfish one across both datasets.

As it has been anticipated, Rockfish with Tombo achieves higher accuracy than

both Remapper implementations. Furthermore, Remapper with the Longer neighbour

method for resolving deletions performs slightly better than the one with Concatenate

and divide method. The reason probably lies in previously explored assumption that

the signal points from deleted base are assigned to the neighbour who has more points,

therefore points from the longer neighbour should be assigned back to the deleted base.
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This theory appears to achieve better results than dividing the points uniformly from

both neighbours.

6.4. Future work

In future work, the parameter space might be explored more thoroughly, since there

is a large number of parameters in the implementation, which leaves a justified doubt

that optimal configuration has not yet been found.

Furthermore, methods for resolving insertions and deletions are written in a way

that they can easily be modified without affecting the rest of the pipeline. Thus, pos-

sible improvements may lie in implementation of a different remapping strategy, for

instance looking at more than one neighbour at each side, applying certain statistical

tests alike Tombo, etc. However, keeping the rest of implementation is advised, since

there has been put a lot of effort to write it optimally, and it achieves remarkable results

regarding the runtime.
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7. Conclusion

The field of epigenetics shows a great potential for helping detect tumors and other

diseases early on. DNA modification detection is crucial for discovering possible epi-

genetic abnormalities, hence, in the last few years, multiple tools have been devel-

oped to tackle said detection. The main concern of this thesis is the development of a

method for detecting DNA base modifications using DNA Nanopore sequencing and

deep learning methods, thus giving a contribution to this exciting and important field.

This thesis’ implementation is built on top of Rockfish, a state-of-the-art deep

learning model based on transformer architecture. The idea is to replace Tombo, a bot-

tleneck in the Rockfish pipeline, with a faster method. The data is thoroughly analysed

in order to devise the most suitable solution, called Remapper. The Remapper method

consists of aligning basecalled reads to the reference using Mappy and remapping sig-

nal points at indels. To resolve insertions Half-half method is developed, whereas to

resolve deletions two approaches are proposed, Concatenate and divide method, and

Longer neighbour method.

The solution is implemented in Python with the help of PyTorch library. The run-

time of data extraction, including basecalling and Remapper method, is evaluated on

both E. coli and NA12878 human dataset, whilst the model is trained solely on the

human data.

It is shown that Remapper is 5 to 6 times faster than Rockfish in both of its imple-

mentations and on both datasets. However, obtained speed comes with a cost of lower-

ing the modification detection accuracy. Rockfish has the highest accuracy, Remapper

with the Longer neighbour method follows, and Remapper with the Concatenate and

divide method is the last.

To conclude, remarkable results regarding the runtime are achieved, though at the

cost of reduced, but still reasonable, accuracy. The implementation is designed to en-

able easy improvements, thus different remapping methods could be explored, along-

side different parameters, to obtain a higher accuracy.
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Detection of Modified Nucleotides Using Nanopore Sequencing and Deep

Learning Methods

Abstract

In this thesis, a method for DNA base modification detection is developed using

Nanopore sequencing and deep learning principles. Nanopore sequencing detects dif-

ferent electrical current signals for different nucleotides, whilst a DNA strand passes

through a nanopore. Then, basecalling is performed, translating the detected signals

into a DNA sequence. After aligning basecalled reads to the reference, signal points at

insertions and deletions should be remapped, using the developed Remapper method.

The implementation achieves significant results regarding the runtime, though at the

cost of reduced accuracy. Source code is available at https://github.com/

sanjadeur/master-thesis/.

Keywords: epigenetics, DNA modification, 5mC methylation, CpG context, Nanopore

sequencing, deep learning

Odred̄ivanje modificiranih nukleotida koristeći sekvenciranje nanoporama i

duboko učenje

Sažetak

U ovome je radu razvijena metoda za detekciju modifikacija baza u DNA, ko-

risteći sekvenciranje nanoporama i principe dubokog učenja. Sekvenciranje nanopo-

rama detektira različite električne signale za različite nukleotide, za vrijeme prolaska

DNA lanca kroz nanoporu. Zatim se provodi pretvorba detektiranih signala u DNA

sekvencu. Nakon poravnanja očitanja na referencu, točke signala na mjestima insercija

i delecija trebaju se remapirati, koristeći razvijenu metodu Remapper. Implementacija

postiže značajne rezultate što se tiče vremena izvod̄enja, med̄utim s cijenom sman-

jenja točnosti. Izvorni kod dostupan je na https://github.com/sanjadeur/

master-thesis/.

Ključne riječi: epigenetika, modifikacija DNA, 5mC metilacija, CpG kontekst, sekven-

ciranje nanoporama, duboko učenje


