Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1176651

Wound Detection by Simple Feedforward Neural Network


Marijanović, Domagoj; Nyarko, Emmanuel Karlo; Filko, Damir
Wound Detection by Simple Feedforward Neural Network // Electronics, 11 (2022), 3; 329, 18 doi:10.3390/electronics11030329 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1176651 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Wound Detection by Simple Feedforward Neural Network

Autori
Marijanović, Domagoj ; Nyarko, Emmanuel Karlo ; Filko, Damir

Izvornik
Electronics (2079-9292) 11 (2022), 3; 329, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
chronic wounds ; wound detection ; wound segmentation ; feedforward neural network ; robot

Sažetak
Chronic wounds are a heavy burden on medical facilities, so any help in treating them is most welcome. Current research focuses on wound analysis, especially wound tissue classification, wound measurement, and wound healing prediction to assist medical personnel in wound treatment, with the main goal of reducing wound healing time. The first phase of wound analysis is wound segmentation, where the task is to extract wounds from the healthy tissue and image background. In this work, a standard feedforward neural network was developed for the purpose of wound segmentation using data from the MICCAI 2021 Foot Ulcer Segmentation (FUSeg) Challenge. It proved to be a simple yet efficient method for extracting wounds from images. The proposed algorithm is part of a compact system that analyzes chronic wounds using a robotic manipulator, RGB-D camera and 3D scanner. The feedforward neural network consists of only five fully connected layers, the first four with Rectified Linear Unit (ReLU) activation functions and the last with sigmoid activation functions. Three separate models were trained and tested using images provided as part of the challenge. The predicted images were post- processed and merged to improve the final segmentation performance.The accuracy metrics observed during model training and selection were Precision, Recall and F1 score. The experimental results of the proposed network provided a recall value of 0.77, precision value of 0.72, and an F1 score (Dice score) of 0.74.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
UIP-2019-04-4889 - Metode za 3D rekonstrukciju i analizu kroničnih rana (Vision4Wounds) (Filko, Damir, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Marijanović, Domagoj; Nyarko, Emmanuel Karlo; Filko, Damir
Wound Detection by Simple Feedforward Neural Network // Electronics, 11 (2022), 3; 329, 18 doi:10.3390/electronics11030329 (međunarodna recenzija, članak, znanstveni)
Marijanović, D., Nyarko, E. & Filko, D. (2022) Wound Detection by Simple Feedforward Neural Network. Electronics, 11 (3), 329, 18 doi:10.3390/electronics11030329.
@article{article, author = {Marijanovi\'{c}, Domagoj and Nyarko, Emmanuel Karlo and Filko, Damir}, year = {2022}, pages = {18}, DOI = {10.3390/electronics11030329}, chapter = {329}, keywords = {chronic wounds, wound detection, wound segmentation, feedforward neural network, robot}, journal = {Electronics}, doi = {10.3390/electronics11030329}, volume = {11}, number = {3}, issn = {2079-9292}, title = {Wound Detection by Simple Feedforward Neural Network}, keyword = {chronic wounds, wound detection, wound segmentation, feedforward neural network, robot}, chapternumber = {329} }
@article{article, author = {Marijanovi\'{c}, Domagoj and Nyarko, Emmanuel Karlo and Filko, Damir}, year = {2022}, pages = {18}, DOI = {10.3390/electronics11030329}, chapter = {329}, keywords = {chronic wounds, wound detection, wound segmentation, feedforward neural network, robot}, journal = {Electronics}, doi = {10.3390/electronics11030329}, volume = {11}, number = {3}, issn = {2079-9292}, title = {Wound Detection by Simple Feedforward Neural Network}, keyword = {chronic wounds, wound detection, wound segmentation, feedforward neural network, robot}, chapternumber = {329} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font