Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1173345

Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images


Stančić, Adam; Vyroubal, Vedran; Slijepčević, Vedran
Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images // MDPI Journal of Imaging, 8 (2022), 2; jimaging-1418653, 26 doi:10.3390/jimaging8020020 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1173345 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images

Autori
Stančić, Adam ; Vyroubal, Vedran ; Slijepčević, Vedran

Izvornik
MDPI Journal of Imaging (2313-433X) 8 (2022), 2; Jimaging-1418653, 26

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
classification ; CNN ; efficiency ; pre-trained ; camera trap

Sažetak
This paper presents the evaluation of 36 convolutional neural network (CNN) models, which were trained on the same dataset (ImageNet). The aim of this research was to evaluate the performance of pre-trained models on the binary classification of images in a “real-world” application. The classification of wildlife images was the use case, in particular, those of the Eurasian lynx (lat. “Lynx lynx”), which were collected by camera traps in various locations in Croatia. The collected images varied greatly in terms of image quality, while the dataset itself was highly imbalanced in terms of the percentage of images that depicted lynxes.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Veleučilište u Karlovcu

Profili:

Avatar Url Vedran Slijepcevic (autor)

Avatar Url Vedran Vyroubal (autor)

Avatar Url Adam Stančić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Stančić, Adam; Vyroubal, Vedran; Slijepčević, Vedran
Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images // MDPI Journal of Imaging, 8 (2022), 2; jimaging-1418653, 26 doi:10.3390/jimaging8020020 (međunarodna recenzija, članak, znanstveni)
Stančić, A., Vyroubal, V. & Slijepčević, V. (2022) Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images. MDPI Journal of Imaging, 8 (2), jimaging-1418653, 26 doi:10.3390/jimaging8020020.
@article{article, author = {Stan\v{c}i\'{c}, Adam and Vyroubal, Vedran and Slijep\v{c}evi\'{c}, Vedran}, year = {2022}, pages = {26}, DOI = {10.3390/jimaging8020020}, chapter = {jimaging-1418653}, keywords = {classification, CNN, efficiency, pre-trained, camera trap}, journal = {MDPI Journal of Imaging}, doi = {10.3390/jimaging8020020}, volume = {8}, number = {2}, issn = {2313-433X}, title = {Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images}, keyword = {classification, CNN, efficiency, pre-trained, camera trap}, chapternumber = {jimaging-1418653} }
@article{article, author = {Stan\v{c}i\'{c}, Adam and Vyroubal, Vedran and Slijep\v{c}evi\'{c}, Vedran}, year = {2022}, pages = {26}, DOI = {10.3390/jimaging8020020}, chapter = {jimaging-1418653}, keywords = {classification, CNN, efficiency, pre-trained, camera trap}, journal = {MDPI Journal of Imaging}, doi = {10.3390/jimaging8020020}, volume = {8}, number = {2}, issn = {2313-433X}, title = {Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images}, keyword = {classification, CNN, efficiency, pre-trained, camera trap}, chapternumber = {jimaging-1418653} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font