Pregled bibliografske jedinice broj: 1170415
Early prediction of student performance in massive open online courses at different stages of course progress
Early prediction of student performance in massive open online courses at different stages of course progress // International Doctoral Seminar 2022 - proceedings
Trnava: Faculty of Materials Science and Technology STU, 2022. str. 45-58 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1170415 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Early prediction of student performance in massive open online courses at different stages of course progress
Autori
Domladovac, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
International Doctoral Seminar 2022 - proceedings
/ - Trnava : Faculty of Materials Science and Technology STU, 2022, 45-58
ISBN
978-80-8096-292-0
Skup
International Doctoral Seminar
Mjesto i datum
Trnava, Slovačka, 27.04.2022. - 28.04.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
machine learning ; decision tree ; student performance ; OULAD dataset
Sažetak
Student success is paramount at all levels of education, especially for universities. Improving the success and quality of enrolled students is one of the most important concerns. It is important to monitor the early symptoms of at-risk students and take preventive measures earlier to identify the cause of student dropout rate. In this research, we will use data mining techniques to identify the factors that influence student success. We use the Open University Learning Analytics Dataset (OULAD) education dataset code module FFF and code presentation 2014J with 2364 students. We used grid search along with ANOVA ranked feature combinations in a pipeline to build our model. In this context, we will use Logistic Regression and Decision Tree for classification models. This research focuses on evaluating how predictions change over time after each test and how early we can obtain good predictive power. We built the model immediately after each exam in the course. The results showed that we can get good results very early in the course, which gives much more room for timely intervention.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti, Interdisciplinarne društvene znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Marko Domladovac
(autor)