Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1170415

Early prediction of student performance in massive open online courses at different stages of course progress


Domladovac, Marko
Early prediction of student performance in massive open online courses at different stages of course progress // International Doctoral Seminar 2022 - proceedings
Trnava: Faculty of Materials Science and Technology STU, 2022. str. 45-58 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1170415 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Early prediction of student performance in massive open online courses at different stages of course progress

Autori
Domladovac, Marko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
International Doctoral Seminar 2022 - proceedings / - Trnava : Faculty of Materials Science and Technology STU, 2022, 45-58

ISBN
978-80-8096-292-0

Skup
International Doctoral Seminar

Mjesto i datum
Trnava, Slovačka, 27.04.2022. - 28.04.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
machine learning ; decision tree ; student performance ; OULAD dataset

Sažetak
Student success is paramount at all levels of education, especially for universities. Improving the success and quality of enrolled students is one of the most important concerns. It is important to monitor the early symptoms of at-risk students and take preventive measures earlier to identify the cause of student dropout rate. In this research, we will use data mining techniques to identify the factors that influence student success. We use the Open University Learning Analytics Dataset (OULAD) education dataset code module FFF and code presentation 2014J with 2364 students. We used grid search along with ANOVA ranked feature combinations in a pipeline to build our model. In this context, we will use Logistic Regression and Decision Tree for classification models. This research focuses on evaluating how predictions change over time after each test and how early we can obtain good predictive power. We built the model immediately after each exam in the course. The results showed that we can get good results very early in the course, which gives much more room for timely intervention.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti, Interdisciplinarne društvene znanosti



POVEZANOST RADA


Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Marko Domladovac (autor)

Citiraj ovu publikaciju:

Domladovac, Marko
Early prediction of student performance in massive open online courses at different stages of course progress // International Doctoral Seminar 2022 - proceedings
Trnava: Faculty of Materials Science and Technology STU, 2022. str. 45-58 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Domladovac, M. (2022) Early prediction of student performance in massive open online courses at different stages of course progress. U: International Doctoral Seminar 2022 - proceedings.
@article{article, author = {Domladovac, Marko}, year = {2022}, pages = {45-58}, keywords = {machine learning, decision tree, student performance, OULAD dataset}, isbn = {978-80-8096-292-0}, title = {Early prediction of student performance in massive open online courses at different stages of course progress}, keyword = {machine learning, decision tree, student performance, OULAD dataset}, publisher = {Faculty of Materials Science and Technology STU}, publisherplace = {Trnava, Slova\v{c}ka} }
@article{article, author = {Domladovac, Marko}, year = {2022}, pages = {45-58}, keywords = {machine learning, decision tree, student performance, OULAD dataset}, isbn = {978-80-8096-292-0}, title = {Early prediction of student performance in massive open online courses at different stages of course progress}, keyword = {machine learning, decision tree, student performance, OULAD dataset}, publisher = {Faculty of Materials Science and Technology STU}, publisherplace = {Trnava, Slova\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font