Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1170360

An optimal control problem in a tubular thin domain with rough boundary


Nakasato, Jean Carlos; Corrêa Pereira, Marcone
An optimal control problem in a tubular thin domain with rough boundary // Journal of differential equations, 313 (2022), 188-243 doi:10.1016/j.jde.2021.12.021 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1170360 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An optimal control problem in a tubular thin domain with rough boundary

Autori
Nakasato, Jean Carlos ; Corrêa Pereira, Marcone

Izvornik
Journal of differential equations (0022-0396) 313 (2022); 188-243

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Reaction-diffusion equation ; Robin boundary condition ; Thin domain ; Oscillating boundary ; Homogenization

Sažetak
In this paper we analyze the asymptotic behavior of a control problem set by a convection-reaction- diffusion equation with mixed boundary conditions and defined in a tubular thin domain with rough boundary. The control term acts on a subset of the rough boundary where a Robin-type boundary condition and a catalyzed reaction mechanism are set. The reaction mechanism depends on a parameter $\alpha \in \mathbb{; ; ; R}; ; ; $. Such parameter establishes different regimes which also depend on the profile and geometry of the tube defined by a periodic function $g : \mathbb{; ; ; R}; ; ; ^2 \to \mathbb{; ; ; R}; ; ; $. We see that, if $\partial_{; ; ; 2}; ; ; g$ is not null (that is, when g really depends on the second variable), then three regimes with respect to $\alpha$ are established: $\alpha<2$, $\alpha=2$ (the critical value) and $\alpha>2$. On the other hand, if $\partial_{; ; ; 2}; ; ; g=0$, similar regimes are obtained but now with a different critical value. Indeed, if $\partial_{; ; ; 2}; ; ; g=0$, then the critical value is achieved at $\alpha=1$. For each one of these six regimes, we obtain the asymptotic behavior of the control problem when the cylindrical thin domain degenerates to the unit interval. We show that the problem is asymptotically controllable just when α assumes the critical values. Our analysis is mainly performed using the periodic unfolding method adapted to cylindrical coordinates in $\mathbb{; ; ; R}; ; ; ^3$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-2735 - Asimptotička analiza rubnih problema u mehanici kontinuuma (ASAN) (Marušić-Paloka, Eduard, HRZZ - 2018-01) ( CroRIS)
HRZZ-IP-2019-04-1140 - Višeskalni problemi u mehanici fluida (MultiFM) (Pažanin, Igor, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Nakasato, Jean Carlos; Corrêa Pereira, Marcone
An optimal control problem in a tubular thin domain with rough boundary // Journal of differential equations, 313 (2022), 188-243 doi:10.1016/j.jde.2021.12.021 (međunarodna recenzija, članak, znanstveni)
Nakasato, J. & Corrêa Pereira, M. (2022) An optimal control problem in a tubular thin domain with rough boundary. Journal of differential equations, 313, 188-243 doi:10.1016/j.jde.2021.12.021.
@article{article, author = {Nakasato, Jean Carlos and Corr\^{e}a Pereira, Marcone}, year = {2022}, pages = {188-243}, DOI = {10.1016/j.jde.2021.12.021}, keywords = {Reaction-diffusion equation, Robin boundary condition, Thin domain, Oscillating boundary, Homogenization}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2021.12.021}, volume = {313}, issn = {0022-0396}, title = {An optimal control problem in a tubular thin domain with rough boundary}, keyword = {Reaction-diffusion equation, Robin boundary condition, Thin domain, Oscillating boundary, Homogenization} }
@article{article, author = {Nakasato, Jean Carlos and Corr\^{e}a Pereira, Marcone}, year = {2022}, pages = {188-243}, DOI = {10.1016/j.jde.2021.12.021}, keywords = {Reaction-diffusion equation, Robin boundary condition, Thin domain, Oscillating boundary, Homogenization}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2021.12.021}, volume = {313}, issn = {0022-0396}, title = {An optimal control problem in a tubular thin domain with rough boundary}, keyword = {Reaction-diffusion equation, Robin boundary condition, Thin domain, Oscillating boundary, Homogenization} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font