Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1165839

A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation


Weidmann, Franz; Jager, Jonas; Reus, Gereon; Schultz, Stewart T.; Kruschel, Claudia; Wolff, Viviane; Fricke-Neuderth, Klaus
A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation // MTS/IEEE OCEANS Conference Marseille, 2019.
Marseille: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 1-6 doi:10.1109/OCEANSE.2019.8867064 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1165839 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation

Autori
Weidmann, Franz ; Jager, Jonas ; Reus, Gereon ; Schultz, Stewart T. ; Kruschel, Claudia ; Wolff, Viviane ; Fricke-Neuderth, Klaus

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
MTS/IEEE OCEANS Conference Marseille, 2019. / - Marseille : Institute of Electrical and Electronics Engineers (IEEE), 2019, 1-6

ISBN
978-1-7281-1451-4

Skup
OCEANS EUROPE

Mjesto i datum
Marseille, Francuska, 17.06.2019. - 20.06.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Convolution ; Semantics ; Image segmentation ; Training ; Decoding ; Kernel ; Encoding

Sažetak
Underwater imaging enables marine researchers to collect large datasets of seagrass images. These images can be used to monitor the health state of underwater meadows by estimating the area that is covered by seagrass and how this area changes over time. Since the manual analysis of such images is slow and error-prone, we follow the path of deep learning for automatic image analysis.Our contribution is the investigation of deep semantic segmentation for the specific task of seagrass coverage estimation. We evaluated multiple Deep Neural Network Architectures including the DeepLabv3Plus Network which performs best, with a mean intersection over union of 87.78%. The qualitative results in our experiments indicate that the Deep Learning approach is not only more accurate than a human but also multiple times faster in annotating underwater meadows. Our code is available on GitHub: https://enviewfulda.github.io/LookingForSeagrassSemanticSegmentation/.

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Claudia Kruschel (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Weidmann, Franz; Jager, Jonas; Reus, Gereon; Schultz, Stewart T.; Kruschel, Claudia; Wolff, Viviane; Fricke-Neuderth, Klaus
A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation // MTS/IEEE OCEANS Conference Marseille, 2019.
Marseille: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 1-6 doi:10.1109/OCEANSE.2019.8867064 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Weidmann, F., Jager, J., Reus, G., Schultz, S., Kruschel, C., Wolff, V. & Fricke-Neuderth, K. (2019) A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation. U: MTS/IEEE OCEANS Conference Marseille, 2019. doi:10.1109/OCEANSE.2019.8867064.
@article{article, author = {Weidmann, Franz and Jager, Jonas and Reus, Gereon and Schultz, Stewart T. and Kruschel, Claudia and Wolff, Viviane and Fricke-Neuderth, Klaus}, year = {2019}, pages = {1-6}, DOI = {10.1109/OCEANSE.2019.8867064}, keywords = {Convolution, Semantics, Image segmentation, Training, Decoding, Kernel, Encoding}, doi = {10.1109/OCEANSE.2019.8867064}, isbn = {978-1-7281-1451-4}, title = {A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation}, keyword = {Convolution, Semantics, Image segmentation, Training, Decoding, Kernel, Encoding}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Marseille, Francuska} }
@article{article, author = {Weidmann, Franz and Jager, Jonas and Reus, Gereon and Schultz, Stewart T. and Kruschel, Claudia and Wolff, Viviane and Fricke-Neuderth, Klaus}, year = {2019}, pages = {1-6}, DOI = {10.1109/OCEANSE.2019.8867064}, keywords = {Convolution, Semantics, Image segmentation, Training, Decoding, Kernel, Encoding}, doi = {10.1109/OCEANSE.2019.8867064}, isbn = {978-1-7281-1451-4}, title = {A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation}, keyword = {Convolution, Semantics, Image segmentation, Training, Decoding, Kernel, Encoding}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Marseille, Francuska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font