Pregled bibliografske jedinice broj: 1165839
A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation
A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage Estimation // MTS/IEEE OCEANS Conference Marseille, 2019.
Marseille: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 1-6 doi:10.1109/OCEANSE.2019.8867064 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1165839 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Closer Look at Seagrass Meadows: Semantic Segmentation for Visual Coverage
Estimation
Autori
Weidmann, Franz ; Jager, Jonas ; Reus, Gereon ; Schultz, Stewart T. ; Kruschel, Claudia ; Wolff, Viviane ; Fricke-Neuderth, Klaus
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MTS/IEEE OCEANS Conference Marseille, 2019.
/ - Marseille : Institute of Electrical and Electronics Engineers (IEEE), 2019, 1-6
ISBN
978-1-7281-1451-4
Skup
OCEANS EUROPE
Mjesto i datum
Marseille, Francuska, 17.06.2019. - 20.06.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Convolution ; Semantics ; Image segmentation ; Training ; Decoding ; Kernel ; Encoding
Sažetak
Underwater imaging enables marine researchers to collect large datasets of seagrass images. These images can be used to monitor the health state of underwater meadows by estimating the area that is covered by seagrass and how this area changes over time. Since the manual analysis of such images is slow and error-prone, we follow the path of deep learning for automatic image analysis.Our contribution is the investigation of deep semantic segmentation for the specific task of seagrass coverage estimation. We evaluated multiple Deep Neural Network Architectures including the DeepLabv3Plus Network which performs best, with a mean intersection over union of 87.78%. The qualitative results in our experiments indicate that the Deep Learning approach is not only more accurate than a human but also multiple times faster in annotating underwater meadows. Our code is available on GitHub: https://enviewfulda.github.io/LookingForSeagrassSemanticSegmentation/.
Izvorni jezik
Engleski