Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1165720

Looking for Seagrass: Deep Learning for Visual Coverage Estimation


Reus, Gereon; Möller, Thomas; Jäger, Jonas; Schultz, Stewart T.; Kruschel, Claudia; Hasenauer, Julian; Wolff, Viviane; Fricke- Neuderth, Klaus
Looking for Seagrass: Deep Learning for Visual Coverage Estimation // Proceedings 2018 OCEANS - MTS/IEEE Kobe Techno- Oceans (OTO)
Kobe: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 1-6 doi:10.1109/OCEANSKOBE.2018.8559302 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1165720 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Looking for Seagrass: Deep Learning for Visual Coverage Estimation

Autori
Reus, Gereon ; Möller, Thomas ; Jäger, Jonas ; Schultz, Stewart T. ; Kruschel, Claudia ; Hasenauer, Julian ; Wolff, Viviane ; Fricke- Neuderth, Klaus

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings 2018 OCEANS - MTS/IEEE Kobe Techno- Oceans (OTO) / - Kobe : Institute of Electrical and Electronics Engineers (IEEE), 2018, 1-6

ISBN
978-1-5386-1655-0

Skup
OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO 2018))

Mjesto i datum
Kobe, Japan, 28.05.2018. - 31.05.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
feature extraction ; training ; convolutional neural networks ; image segmentation ; logistics ; clustering algorithms ; measurement

Sažetak
Underwater videography enables marine researchers to collect enormous amounts of seagrass image data. This collection is fast and cheap but the manual analysis of such data is slow and expensive. Therefore, we propose a machine- learning approach for the automatic seagrass coverage estimation of the sea bottom. Our contribution is the investigation of CNN features to describe patches and superpixels of seagrass. CNN features are the activations of a specific layer in a deep convolutional neural network. We also provide the first public available dataset of seagrass images that can be used as a benchmark for automatic seagrass segmentation. Our best method achieves an accuracy of 94.5% for seagrass segmentation on the provided dataset. Our code and dataset is available on GitHub: https://enviewfulda.github.io/LookingForSeagrass

Izvorni jezik
Engleski

Znanstvena područja
Biologija



POVEZANOST RADA


Ustanove:
Sveučilište u Zadru

Profili:

Avatar Url Stewart Schultz (autor)

Avatar Url Claudia Kruschel (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Reus, Gereon; Möller, Thomas; Jäger, Jonas; Schultz, Stewart T.; Kruschel, Claudia; Hasenauer, Julian; Wolff, Viviane; Fricke- Neuderth, Klaus
Looking for Seagrass: Deep Learning for Visual Coverage Estimation // Proceedings 2018 OCEANS - MTS/IEEE Kobe Techno- Oceans (OTO)
Kobe: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 1-6 doi:10.1109/OCEANSKOBE.2018.8559302 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Reus, G., Möller, T., Jäger, J., Schultz, S., Kruschel, C., Hasenauer, J., Wolff, V. & Fricke- Neuderth, K. (2018) Looking for Seagrass: Deep Learning for Visual Coverage Estimation. U: Proceedings 2018 OCEANS - MTS/IEEE Kobe Techno- Oceans (OTO) doi:10.1109/OCEANSKOBE.2018.8559302.
@article{article, author = {Reus, Gereon and M\"{o}ller, Thomas and J\"{a}ger, Jonas and Schultz, Stewart T. and Kruschel, Claudia and Hasenauer, Julian and Wolff, Viviane and Fricke- Neuderth, Klaus}, year = {2018}, pages = {1-6}, DOI = {10.1109/OCEANSKOBE.2018.8559302}, keywords = {feature extraction, training, convolutional neural networks, image segmentation, logistics, clustering algorithms, measurement}, doi = {10.1109/OCEANSKOBE.2018.8559302}, isbn = {978-1-5386-1655-0}, title = {Looking for Seagrass: Deep Learning for Visual Coverage Estimation}, keyword = {feature extraction, training, convolutional neural networks, image segmentation, logistics, clustering algorithms, measurement}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Kobe, Japan} }
@article{article, author = {Reus, Gereon and M\"{o}ller, Thomas and J\"{a}ger, Jonas and Schultz, Stewart T. and Kruschel, Claudia and Hasenauer, Julian and Wolff, Viviane and Fricke- Neuderth, Klaus}, year = {2018}, pages = {1-6}, DOI = {10.1109/OCEANSKOBE.2018.8559302}, keywords = {feature extraction, training, convolutional neural networks, image segmentation, logistics, clustering algorithms, measurement}, doi = {10.1109/OCEANSKOBE.2018.8559302}, isbn = {978-1-5386-1655-0}, title = {Looking for Seagrass: Deep Learning for Visual Coverage Estimation}, keyword = {feature extraction, training, convolutional neural networks, image segmentation, logistics, clustering algorithms, measurement}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Kobe, Japan} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font