Pregled bibliografske jedinice broj: 1165720
Looking for Seagrass: Deep Learning for Visual Coverage Estimation
Looking for Seagrass: Deep Learning for Visual Coverage Estimation // Proceedings 2018 OCEANS - MTS/IEEE Kobe Techno- Oceans (OTO)
Kobe: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 1-6 doi:10.1109/OCEANSKOBE.2018.8559302 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1165720 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Looking for Seagrass: Deep Learning for Visual
Coverage Estimation
Autori
Reus, Gereon ; Möller, Thomas ; Jäger, Jonas ; Schultz, Stewart T. ; Kruschel, Claudia ; Hasenauer, Julian ; Wolff, Viviane ; Fricke- Neuderth, Klaus
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings 2018 OCEANS - MTS/IEEE Kobe Techno- Oceans (OTO)
/ - Kobe : Institute of Electrical and Electronics Engineers (IEEE), 2018, 1-6
ISBN
978-1-5386-1655-0
Skup
OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO 2018))
Mjesto i datum
Kobe, Japan, 28.05.2018. - 31.05.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
feature extraction ; training ; convolutional neural networks ; image segmentation ; logistics ; clustering algorithms ; measurement
Sažetak
Underwater videography enables marine researchers to collect enormous amounts of seagrass image data. This collection is fast and cheap but the manual analysis of such data is slow and expensive. Therefore, we propose a machine- learning approach for the automatic seagrass coverage estimation of the sea bottom. Our contribution is the investigation of CNN features to describe patches and superpixels of seagrass. CNN features are the activations of a specific layer in a deep convolutional neural network. We also provide the first public available dataset of seagrass images that can be used as a benchmark for automatic seagrass segmentation. Our best method achieves an accuracy of 94.5% for seagrass segmentation on the provided dataset. Our code and dataset is available on GitHub: https://enviewfulda.github.io/LookingForSeagrass
Izvorni jezik
Engleski
Znanstvena područja
Biologija
POVEZANOST RADA
Ustanove:
Sveučilište u Zadru