Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1165186

Deep learning-based defect detection from sequences of ultrasonic B-scans


Medak, Duje; Posilovic, Luka; Subasic, Marko; Budimir, Marko; Loncaric, Sven
Deep learning-based defect detection from sequences of ultrasonic B-scans // Ieee sensors journal, 22 (2022), 3; 2456-2463 doi:10.1109/jsen.2021.3134452 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1165186 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep learning-based defect detection from sequences of ultrasonic B-scans

Autori
Medak, Duje ; Posilovic, Luka ; Subasic, Marko ; Budimir, Marko ; Loncaric, Sven

Izvornik
Ieee sensors journal (1530-437X) 22 (2022), 3; 2456-2463

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
image analysis ; deep learning ; convolutional neural networks ; defect detection ; ultrasonic testing

Sažetak
Ultrasonic testing (UT) is one of the commonly used non-destructive testing (NDT) techniques for material evaluation and defect detection. The acquisition of UT data is largely performed automatically by using various robotic manipulators which can ensure the consistency of the recorded data. On the other hand, complete analysis of the acquired data is still performed manually by trained personnel. This makes the reliability of defect detection highly dependent on humans’ knowledge and experience. Most of the previous attempts for automated defect detection from UT data analyze individual A-scans. In such cases, valuable information present in the surrounding A-scans remains unused and limits the performance of such methods. The situation is better if a B-scan is used as an input, especially if the dataset is large enough to train a deep learning object detector. However, if each of the B-scans is analyzed individually, as it was done so far in the literature, there is still valuable information left in the surrounding B-scans that could be used to improve the precision. We showed that expanding the input layer of an existing method will not lead to an improvement and that a more complex approach is needed in order to effectively use information from neighboring B- scans. We propose two approaches based on high- dimensional feature maps merging. We showed that proposed models improve mean average precision (mAP) compared to the previous state-of-the-art model by 2% for input resolutions of 512×512 pixels, and 3.4% for input resolutions of 384×384 pixels.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
INETEC,
Sveučilište u Zagrebu

Profili:

Avatar Url Marko Subašić (autor)

Avatar Url Sven Lončarić (autor)

Avatar Url Marko Budimir (autor)

Avatar Url Duje Medak (autor)

Avatar Url Luka Posilović (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Medak, Duje; Posilovic, Luka; Subasic, Marko; Budimir, Marko; Loncaric, Sven
Deep learning-based defect detection from sequences of ultrasonic B-scans // Ieee sensors journal, 22 (2022), 3; 2456-2463 doi:10.1109/jsen.2021.3134452 (međunarodna recenzija, članak, znanstveni)
Medak, D., Posilovic, L., Subasic, M., Budimir, M. & Loncaric, S. (2022) Deep learning-based defect detection from sequences of ultrasonic B-scans. Ieee sensors journal, 22 (3), 2456-2463 doi:10.1109/jsen.2021.3134452.
@article{article, author = {Medak, Duje and Posilovic, Luka and Subasic, Marko and Budimir, Marko and Loncaric, Sven}, year = {2022}, pages = {2456-2463}, DOI = {10.1109/jsen.2021.3134452}, keywords = {image analysis, deep learning, convolutional neural networks, defect detection, ultrasonic testing}, journal = {Ieee sensors journal}, doi = {10.1109/jsen.2021.3134452}, volume = {22}, number = {3}, issn = {1530-437X}, title = {Deep learning-based defect detection from sequences of ultrasonic B-scans}, keyword = {image analysis, deep learning, convolutional neural networks, defect detection, ultrasonic testing} }
@article{article, author = {Medak, Duje and Posilovic, Luka and Subasic, Marko and Budimir, Marko and Loncaric, Sven}, year = {2022}, pages = {2456-2463}, DOI = {10.1109/jsen.2021.3134452}, keywords = {image analysis, deep learning, convolutional neural networks, defect detection, ultrasonic testing}, journal = {Ieee sensors journal}, doi = {10.1109/jsen.2021.3134452}, volume = {22}, number = {3}, issn = {1530-437X}, title = {Deep learning-based defect detection from sequences of ultrasonic B-scans}, keyword = {image analysis, deep learning, convolutional neural networks, defect detection, ultrasonic testing} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font