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Abstract—By using drones in search and rescue (SAR) 
missions, missing person detection is possible during or after the 
flight by analyzing the recorded material. However, person 
localization is equally important so that rescuers can approach 
the person in the shortest possible time. We propose a raycast 
method to determine both a person's location and the distance 
from the drone, using a sequence of monocular drone images. 
The proposed method has been tested in silico, using a custom-
made procedural simulator, calibrated for windless and windy 
conditions. We concluded that multiple raycasting solves 
unreliable telemetry problems and that there is an optimal 
number of required iterations, depending on the telemetry noise 
of a specific drone. 
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I. INTRODUCTION 
Search and rescue (SAR) mission in the wild is a 
complex task due to the limited time required to 
operate and a large search area that increase over 
time from the received rescue call. Due to the large 
search area, all possible resources are activated 
(people, search dogs, vehicles, helicopters, IR 
cameras, drones...).  

Detection of missing persons using drones is 
possible during the flight or after the flight by 
analyzing the recorded material [1]. In SAR 
missions, in addition to the person detection, the 
person localization and drone distance estimation 
are equally important so that rescuers can approach 
the person in the shortest possible time. If the 
detection occurred during a drone flight, the remote 
pilot could determine the person's position on the 
map and distance from the drone according to the 
drone's position using the metadata of drone photos 
such as the drone's GPS position, altitude, and 
orientation, as well as camera orientation 
(roll/pitch/yaw). In the case of offline detection, i.e., 
when analyzing the recorded material, the 
localization of the person is limited to the recorded 
material, which can be a single monocular RGB 
photo.  

Distance estimation in computer vision is most 
commonly done via stereo vision, in which images 
from two stereo cameras are used to triangulate and 

estimate distances to objects and potential obstacles 
[2]. Xiaoming et al. proposed a real-time method 
that can measure distance using a lens radius, focal 
length, sensor height, distance from sensor center to 
lens center, the inclination of the sensor, and the 
number of sensor bars [3]. Object distance can be 
obtained by applying image distance to the lens 
formula. 

In [4], using the camera's field of view (FOV) 
and camera height, they estimated the distance and 
GPS location of the detected object. In this case, as 
in [5], the camera looks perpendicular to the 
ground, and the distance of the camera focal length 
and the flight height of the UAV determine the scale 
of the image. By converting the image to the 
corresponding bird's-eye view using the Inverse 
Perspective Mapping (IPM) algorithm, it is possible 
to estimate distance [6]. Inverse Perspective 
Mapping (IPM) [7] is a mathematical technique for 
transforming a coordinate system from one 
perspective to another. 

DistNet [8] is another approach, where authors 
used the object's bounding boxes resulting from the 
YOLO object classification, processed to calculate 
the features, bounding boxes' parameters. Based on 
the input features, the trained DistNet outputs the 
estimated distance of the object to the camera 
sensor. 

The authors [9] introduced a base model to 
directly predict distances (in meters) from a given 
RGB image and object bounding boxes as the first 
attempt to utilize deep learning techniques for 
object-specific distance estimation. To predict a 
distance, they use the distance regressor, which 
contains three fully connected (FC) layers and 
applies a softplus activation function on the last 
fully connected layer. 

In this paper, for the case of offline search of a 
missing person, it is proposed to use drone photo 
metadata and a raycast method to determine the 
person's location and distance from the drone. A 
raycast is a process of tracing geometric rays from 



the camera, finding line-surface intersection points 
[10]. It was initially invented as the methodological 
basis for a CAD/CAM solid modeling system. 

The rest of the paper is organized as follows: in 
Section II. a description of the proposed raycast 
method for person localization and distance 
determination is given. A custom-made procedural 
simulator used to test the reliability of the proposed 
method considering a telemetry noise is presented 
in Section III. and calibration of the simulator and 
discussion of error variations in Section IV. The 
paper ends with a conclusion and a proposal for 
future research. 

II. PROPOSED RAYCAST METHOD 
We propose a raycast method to estimate the 

distance of the detected person from the drone 
position. 

Prerequisites for using the method are: 
• a sequence of aerial images, taken by a drone 

(Fig. 1, left)  

• known specification of drone's camera optics  

• drone and camera telemetry for each image 

• performed detection of persons in each 
image, using a neural network (Fig. 1, right) 

• normalized device coordinates (NDC) of the 
center of the bounding box of the detected 
person. 

The 2D coordinates of the center of the object, 
or in our case the person, that we receive from the 
detector, i.e., YOLO, for each bounding box are 
first normalized, and then these coordinates are 
transformed into 3D coordinates taking into 
account the position and orientation of the camera. 
In our specific example, the center of the red blob 
(representing the person's coordinate) is at the (2D) 

NDC coordinates f (0.635268, 0.663839). Note: 
(0,0) is the lower left, and (1,1) is the upper right 
corner of the 2D image. For the transformation of 
2D coordinates into 3D coordinates, we considered 

the camera coordinates, which were, i.e., c (85, 62, 
80), and the orientation o (-30, 45, 0), so the 
position of the point f in the 3D space becomes t 
(73.7975, 53.3224, 65.6279). 

The raycast direction, in the example the vector 
r (-0.555868, -0.42924, -0.711873), is then 
calculated as the normalized vector of the distance 
of the camera position c from the point t. In the 
further procedure, the raycast algorithm looks for 
the intersection of a line running from the center of 
the camera in the direction of the raycast vector r 
and somewhere (potentially) intersecting the 
terrain. The digital 3D model of the terrain is used 
as a collider. The point where the terrain is being 
intersected is p, and from it, we can read the 
geolocation (as the coordinates of the point p). The 
resulting point p matches the center of the 2D 
bounding box of a detected person in the initial 
image (Fig 2). 

 

 
Fig. 1 – Aerial image, taken by a drone (left). Detection of persons (green bounding boxes) performed by YOLO v4 (right). 

 

 
Fig. 2 – Example of person detection with the corresponding 

geographic coordinates. 



The distance d of the detected person is 
calculated as the distance between the camera 
position c and the determined 3D point p on the 
terrain (1). 

𝑑(𝒄, 𝒑) 	= 	)(𝑐! − 𝑝!)" + .𝑐# − 𝑝#/
" + (𝑐$ − 𝑝$)"      (1) 

III. SIMULATOR 
To test the method, we built a simulator and 
calibrated it by measuring drone data. In the domain 
of autonomous flying, simulators are most often 
used to build synthetic datasets [11], [12] used in 
supervised learning, but also to evaluate the 
performance of reinforced learning models with 
emphasis on their energy efficiency when used on 
specific hardware platforms [13]. In addition to 
annotated images, some simulators generate 
various aerial vehicle sensor data [14]. Simulator 
often relies on using a game engine [15] or a 
modified commercial computer game to conduct a 
specific simulation. Instead, we opted for a digital 
content creation tool that gives us easy access to 
data and powerful data visualization ability. 

The proposed method has been tested in silico, 
using a custom-made procedural simulator. The 
simulation is carried out through two stages (1 and 
2a-2e). In the first stage, a 3D scene is prepared, and 
in the second stage, telemetry noise is added to 
model the actual conditions of application of the 
raycast method, which involves various 
atmospheric influences and measurement errors 
that affect signal accuracy and includes unreliable 
telemetry. 

The simulation stages are as follows: 
1) 3D scene preparation: a terrain is generated, a 

person is positioned, a drone/camera is positioned 
and oriented, and the camera optics (lens width, 
aspect ratio) are adjusted. This setup represents 
perfect drone/camera telemetry, and it is used as 
ground truth (GT). 
 2a) Addition of telemetry noise: the modeled 
error variation is applied to the position and 
orientation of the drone/camera in each frame. 
 2b) Photo/video shooting is simulated at 
arbitrary resolution (in the example 160x160 px, 
aspect ratio 16:9), also using raycasting, where the 
number of rays corresponds to the number of target 
pixels. By varying the resolution, it is possible to 
test the detection tolerance, finding the minimum 
number of pixels required to represent a person. 

2c) Detection is simulated without the use of 
neural networks: the center of a group of pixels is 
sought (a red blob representing a person in the 
example), resulting in NDC coordinates. 

 
2d) Raycasting is performed (Fig. 3). The 

accuracy depends on 2 components: the resolution 
of the digital terrain (1 meter in the example) and 
the resolution of the drone image (160x160 px in 
the example). 

2e) The error is calculated as the distance of the 
raycasted point from the person's GT position. 

Iterating steps 2a-2e a desired number of times 
(240 in the example), the average error is calculated 
as the central coordinate of all previously obtained 
by raycasts. 

The simulator allows generating the random 
terrain (patch 100x100m in the example). However, 
in a real application, the use of a digital elevation 
map (DEM), meshed LiDAR point cloud, or 
sculpted 3D model is expected. A prerequisite for 

 
Fig. 3 shows the entire pixel matrix (160x160) projected onto the 
terrain, but in this step, we use only a single ray (projection of the NDC 
coordinates) which gives us the 3D coordinates of the person. 

 

 
Fig. 4 shows the terrain (white) and the drone (yellow camera, with 
visible orientation) at the height of 62 m. The red sphere represents a 
person, but a 3D model of a person can be used instead (ragdoll models 
are ideal for representing casualties). In this case, the result (distance) is 
152.93 m, visualized with the blue line (from camera to person). 

 



using the terrain is that it can act as a collider. The 
position and shape of the person are determined by 
the user (a simple red sphere was used in the 
example, Fig. 4). 

The outputs of the simulation are the estimated 
distance (in meters) and the geographic coordinates. 
The digital terrain within the simulation can contain 
specific data such as the difficulty of the terrain 
(different types of soil, minefields) and can 
automatically provide information about slopes 
(cliffs) which both can be used for pathfinding from 
the starting point to the person located by drone in 
search and rescue missions. 

IV. CALIBRATION 
To calibrate the simulator and model the error 

variation, measurements of the drone Phantom 4 
Advanced [16] were used with conditions of 4 m/s 
wind and without wind. 

The drone hovers for 8 minutes at a height 
approximately corresponding to that from which it 

searches the terrain in real conditions [17]. The 
camera is aimed at -60 degrees relative to the 
horizon and captures 1 image every 2 seconds (for 
a total of 240 samples). 

Histograms (Fig. 5 and Fig. 6) show a significant 
variation of drone's pitch (0.3-6.1 degrees with the 

   

   

Fig. 2 – Windless conditions. Histograms of roll/pitch/yaw degree of drone (1st row) and camera (2nd row). 

   

   
Fig. 3 – Gentle breeze (4 m/s). Histograms of roll/pitch/yaw degree of drone (1st row) and camera (2nd row). 

 

 
Fig. 1 shows replicated error distribution. The white dots represent 240 
iterations of simulated unstable telemetry, and the red sphere the 
position of the person (GT). The shape of the noise function can be 
seen on the right. 

 



wind and 0.1-4.3 windless) and roll (0-3.1 with the 
wind and 0.4-3.3 windless), which in principle 
follows the normal distribution. The exception is 
the distribution of the drone's roll in windy 
conditions, confirming that during calm weather, 
the error in telemetry is caused by the vibration of 
the drone itself and in windy conditions by the 
rotation in the wind direction.  

The measurement showed a telemetry error 
range of a maximum of 5.8 degrees (for pitch, with 
the wind), so the error in the simulator was modeled 
using uniform noise with a total variation of 6 units 
(±3 meters for position, and ±3 degree for 
rotations). 

Simulating the telemetry error (Fig. 7) allows the 
required number of raycasts to be measured to 
achieve the required accuracy by averaging. The 
error at the start is not large (~6 meters) but grows 
to ~8 m after about 40 iterations (Fig. 8, left). 
Around the 150th iteration, the error is less than 1 
meter, after which it grows again. From this, we can 
conclude that multiple raycasting solves the 
problem of unreliable telemetry and that there is an 
optimal number of required iterations, depending 
on the telemetry noise of a specific drone (which 
can be measured and applied in the simulator). 

It can be seen from Fig. 8 (right) that the raycast 
speed can be significantly increased by reducing the 
number of geometry points (raycast on the terrain 
with 10M points takes 1441 ms, and with 10K 
points only 1.99 ms), and this can be done (without 
significant loss of relief details) by adaptive 
remeshing and/or using terrain chunks. 

The simulator was constructed in SideFX 
Houdini Apprentice 17.5.391 [18], and simulations 
were performed on a MacBook Pro (2.7 GHz Intel 
Core i7, 16 GB RAM, NVIDIA GeForce GT 650M 
1 GB). 

V. CONCLUSION 
Applying person detection in SAR missions is a 

significant life-saving aid, but person localization is 
equally important. The person localization can be 
realized from the data stored in the drone's camera 
image. The measurement accuracy of sensors built 
into the drone can seriously affect the accuracy of 
localization. In this paper, we have examined 
approaches to determine a person's location and 
distance from the drone using the raycast method. 
We tested the proposed method by using a custom-
made procedural simulator. To solve the problem of 
unreliable telemetry, we calibrated the simulator 
using telemetry data from images taken by drone, 
performing multiple raycasts. Depending on the 
telemetry noise of a specific drone, there is an 
optimal number of required raycast iterations. In the 
near future, we plan to use the object detector and 
parameters of this simulation to study localization 
performance in real environments. 
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