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Abstract. Deep neural networks achieve excellent results on various computer 

vision tasks, but learning models require large amounts of tagged images and 

often unavailable data. An alternative solution of using a large amount of data to 

achieve better results and greater generalization of the model is to use previously 

learned models and adapt them to the task at hand, known as transfer learning. 

The aim of this paper is to improve the results of detecting people in search and 

rescue scenes using YOLOv4 detectors. Since the original SARD data set for 

training human detectors in search and rescue scenes are modest, different 

transfer learning approaches are analyzed. Additionally, the VisDrone data set 

containing drone images in urban areas is used to increase training data in order 

to improve person detection results. 
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1. Introduction 

Deep learning methods have been successfully applied in many computer vision 

applications in recent years. Unlike traditional machine learning methods, deep learning 

methods allow automatic learning of features from data and reduce manual extraction 

and presentation features. However, it should be emphasized that the deep learning 

model is highly data-dependent. Large amounts of data are needed in the learning set 

to detect patterns among the data, generate features of the deep learning model, and 

identify the information needed to make a final decision. 

Insufficient data to learn deep learning models are a significant problem in specific 

application domains such as search and rescue (SAR) operations in non-urban areas. 

The process of collecting relevant image data, in this case, is demanding and expensive 

because it requires the use of drones or helicopters to monitor and record non-urban 

areas such as mountains, forests, fields, or water surfaces. The additional problem is 

that scenes with detected casualties rarely appear on the recorded material, which is the 

most useful for learning the model for detecting an injured person. Besides, the data 

collected should be processed, each frame inspected, and each occurrence of a person 

marked with a bounding box and labeled, which is a tedious and time-consuming 

process. 



One way to overcome the problem of data scarcity is to use transfer learning. 

Transfer learning allows a domain model not to be learned from scratch, assuming that 

the learning set data is not necessarily independent and identically distributed as the 

data in the test set. This assumption makes it possible to significantly reduce the amount 

of data required in the learning set and the time required to learn the target domain 

model. 

This paper aims to detect persons on the scenes of search and rescue (SAR) 

operations. Today, it has become commonplace to use drones in SAR missions that fly 

over the search area and film it from a bird's eye view. They can capture a larger area 

at higher altitudes, but then the people in the image are tiny and take up only a few 

pixels. People can be detected more efficiently at lower altitudes, but in that case, the 

field of view is smaller. People who are searched for are very often barely noticeable 

because of the branches and trees, occluded by some vegetation, in the shadow, fused 

with the ground, which further complicates the search even for favorable weather 

conditions. During SAR operations, the drone operator has a demanding task to analyze 

the recorded material in real-time to detect a relatively small person on a large, 

inaccessible surface that requires great concentration, so automatic detection can be 

valuable. 

We used the YOLOv4 model for the person detector trained on the MS COCO 

dataset, which proved to be the most successful in previous research after additional 

learning on domain images [1-3]. 

To train the YOLOv4  model, we used the custom-made set of SARD scenes that 

were shot in a non-urban area with actors simulating injured people and prepared for 

machine learning. To increase the set, we have generated the Corr-SARD set from 

SARD scenes by adding atmospheric conditions. Since tailor-made SARD and Corr-

SARD datasets were relatively small for learning deep learning models, we have 

additionally used the VisDrone dataset to include more images of people taken by 

drone, although not in non-urban areas. 

This paper examined three different transfer learning methods for building YOLOv4 

models for detecting persons in search and rescue operations. In the next section, three 

different methods of transfer learning will be presented. In the third section, the 

experimental setup is given along with the description of image data sets SARD, Corr-

SARD, VisDrone, and basic information about the YOLO4 detector. In the fourth 

section, the experimental results of applying different transfer learning methods will be 

presented and compared. In conclusion, we list important characteristics regarding the 

impact of different transfer learning approaches on person detection in search and 

rescue scenes and a plan for future research. 

2. Transfer Learning 

Transfer learning involves taking a pre-trained neural network and adapting that neural 

network to a new distinct set of data by transferring or repurposing the learned features. 

Transfer learning is beneficial when learning models with limited computing resources 

and when a modest set of data is available for model learning. 



Many state-of-the-art models took days, or even weeks, on powerful GPU machines 

to train them. So, to not repeat the same procedure over a long time, learning transfers 

allow us to use pre-trained weights as a starting point. 

Different levels and methods of applying deep transfer learning can be classified into 

four categories according to [4]: network-based transfer learning, instance-based 

transfer learning, mapping-based transfer learning, and adversarial-based transfer 

learning, which we will not examine here. 

2.1 Network-based deep transfer learning 

Network-based deep transfer learning refers to the reuse of a part of the network 

(without fully connected layers) previously trained in the source domain and is used as 

part of the target network used in the target domain [4]. 

The CNN architecture contains many parameters, so it is difficult to learn so many 

parameters with a relatively small number of images. Therefore, for example, in [5], 

the network is first trained on a large set of data for classification (ImageNet, source 

domain), and such pre-trained parameters of the inner layers of the network are 

transferred to the target tasks (classification, detection, domain target). An additional 

network layer was added and trained on the labeled target set data to minimize the 

differences between the source and the target data regarding various image statistics 

(object type, camera position, lighting) and fit the model to the target data task.  

Suppose the source domain and the target domain differ in scenes. In that case, the 

objects' appearance, lightings, background, position, distance from the camera, and 

similar lower detection results can be expected on target sets than achieved on the 

source. For example, the original model of the YOLO object detector trained on the 

COCO data set was used for detecting players in video frames of handball sports [6] 

and for person detection on thermal images [7]. In the case of player detection in 

handball scenes, the original YOLO model achieved an AP of 43.4%, which is often 

better than person detection in thermal images, where an AP of 19.63% was achieved. 

Lower results on thermal images are due to significant differences between thermal and 

RGB images. Lower detection results on handball scenes were achieved since the 

detector did not accurately identify the player and often drop to mark a high-raised hand 

or leg in the jump, as handball-specific poses did not exist in the original set. 

2.2 Instances-based deep transfer learning 

Instance-based deep transfer learning refers to a method in which a union of selected 

instances from the source domain and instances of the target domain is used for training. 

It is assumed that regardless of differences in domains, the source domain's instances 

will improve detections in the target domain. 

In deep learning, the approach of fine-tuning models on the target domain, which are 

pre-trained on large benchmark datasets of source domains, is standard to improve 

results in other similar target domains. The authors in [8] use an instance-based deep 

transfer approach to measure each training sample's impact in the target domain. The 



primary purpose was to improve the model's performance in the target domain by 

optimizing its training data. In particular, they use a selected pre-trained model to assess 

each training sample's impact in the target domain. According to the impact value, 

remove negative samples and thus optimize the target domain's training set.  

In the previously mentioned research in the sports domain [6] and thermal images [7], 

it was shown that additional learning at the appropriate set and fine-tuning the 

parameters of the pre-trained model to tasks of interest could significantly improve the 

detection results at the target set. Thus, the basic model's AP on the set of thermal 

images with AP 19.63% with additional adjustment on the customized set of thermal 

images achieved AP of 97.93%. In additional learning in the handball scenes, AP 

increased from an initial 43% to 67%. Similar results after fine-tuning with state-of-

the-art backbone deep neural networks such as Inception v2, ResNet 50, ResNet 101 

were also reported in [9]. 

2.3 Mapping-based deep transfer learning 

Mapping-based deep transfer learning refers to mapping instances from the source 

domain and the target domain to a new data space [4]. Mapping-based deep transfer 

learning finds a common latent space in which feature representations for the source 

and target domains are invariant [10]. In [11], a CNN architecture was proposed for 

domain adaptation by introducing an adaptation layer for learning feature 

representations. The maximum mean discrepancy (MMD) metric is used to calculate 

the overall structure's distribution distance concerning a particular representation, 

which helps select the architecture's depth and width and regulate the loss function 

during fine-tuning. Later, in [12] and [13], a multiple kernel variance of MMD was 

proposed (MKMMD) and joint MMD (JMMD) to improve domain adaptation 

performances. However, the main limitation of the MMD methods is that the 

computational cost of MMD increases quadratically with the number of samples when 

calculating Integral Probability Metrics (IPM) [14]. Therefore, Wasserstein distance 

has recently been proposed in [15] as an alternative for finding better distribution 

mapping. 

2.4 Adversarial-based deep transfer learning 

Adversarial-based deep transfer learning mainly refers to introducing adversarial 

technology inspired by generative adversarial networks (GAN) [16] to find transferable 

representations that apply to both the source and target domain but can also refer to the 

use of synthetic data used to enlarge the original dataset artificially. 

In adversarial networks, the extracted features from two domains (source and target) 

are sent to the adversarial layer that tries to discriminate the features' origin. If there is 

a slight difference between the two types of features, the adversarial network achieves 

worse performance, and it is a signal for better transferability, and vice versa. In this 

way, general features with greater portability are revealed in the training process. 



In the case of using synthesized data in order to increase the learning set of the deep 

learning model, it is necessary to analyze the content of the reference video scene and 

select elements to be generated on the virtual scene taking into account the background, 

objects on the scene and accessories, such as [17]. 

3. Experimental Setup 

3.1 Dataset 

In this paper, three datasets were used: the publicly available VisDrone dataset, custom-

made SARD dataset and synthetically enlarged SARD dataset, Corr-SARD datasets. 

From the VisDrone dataset [18] containing images of urban scenes taken by the 

drone, we selected 2,129 images that include a person or pedestrian tag. We combined 

both labels into one class: person. The obtained dataset was divided into a training set 

(1,598 images) and a test set (531 images). The selected dataset from the VisDrone set 

includes shots of people taken under different weather and lighting conditions in 

different urban scenarios such as roads, squares, parks, parking lots, and the like. 

The SARD dataset [19] was recorded in a non-urban area to show persons in scenes 

specific to search and rescue operations. The set contains footage simulating poses of 

injured people found in inaccessible terrains in the hills, forests, and similar places by 

searching and rescuing actions and standard poses of people such as walking, running, 

sitting. The set contains 1,981 images divided into two subsets, a training set containing 

1,189 images and a test set with 792 images. 

The Corr-SARD dataset is derived from the SARD set so that the effects of snow, 

fog, frost, and motion blur are added to the SARD images. The training set has the same 

number of images as the SARD training set, while the test set has slightly fewer images 

(714) because images in which no persons are seen after adding the effect have been 

removed. 

For the experiment, we created an additional three datasets containing images of the 

sets mentioned above. 



 

Fig. 1. Example of images from SARD dataset. 

The SV refers to a mixture of SARD and VisDrone sets. Similarly, the SC is a 

mixture of SARD and Corr set, and SVC is a mixture of SARD, VisDrone, and Corr 

test set. 

3.2 YOLOv4 person detection model 

Detection of persons in high-resolution images taken by a drone is a challenging and 

demanding task. People who are searched for due to loss of orientation, fall, or dementia 

are very often in unusual places, away from the road, in atypical body positions due to 

injury or fall, lying on the ground due to exhaustion, covered with stones due to slipping 

or landslides (Figure 1). On top of all that, the target object is relatively small and often 

camouflaged in the environment, so it is often challenging to observe. 

In this experiment, for person detection, we used the YOLOv4 model [20].  YOLOv4 

uses CSPDarkNet53 as a backbone [21] that includes the DarkNet53, a deep residual 

network with 53 layers, and the CSPNet (Cross Stage Partial Network). To increase the 

receptive field without causing a decrease in velocity, the authors added Spatial 

Pyramid Pooling SSP [22] as the neck, and PAN, Path Aggregation Network [23] for 

path aggregation, instead of the Pyramid Feature Network (FPN) used in YOLOv3. The 

original YOLOv3 network is used for the head [24]. 

In addition to the new architecture, the authors also used training optimization called 

"Bag of Freebies" to achieve greater accuracy without additional hardware costs, such 

as CutMix, Mosaic, CIoU-loss, DropBlock regularization. There is also a "Bag of 

Specials" set of modules that only slightly increase the hardware costs with a significant 

increase in detection accuracy. 

To train and evaluate the YOLOv4 model, we used the Darknet framework [25], an 

open-source neural network framework written in C and CUDA that supports CPU and 



GPU computing. For the experimentation, we used Google Colab [26], a free tool for 

machine learning and local computer Dell G3 i7-9750H CPU, 16 GB RAM, GeForce 

GTX 1660 Ti 6 GB, with Ubuntu 16.04. 64-bit operating system. 

3.3 Evaluation Metrics 

We use average accuracy (AP) to evaluate the detection results. AP is a metric that 

considers the number of correctly and incorrectly classified samples of a particular class 

and is used to determine the detection model's overall detection power, not just accuracy 

[27]. In this experiment, we have used three precision measures in the MS COCO 

format that takes into account detection accuracy (IoU): 

- AP thresholds of 10 IoU (0.5: 0.05: 0.95), 

- AP50 at IoU = 0.50, 

- AP75 in IoU = 0.75. 

The original COCO script was used to calculate the results. 

4. Results of Transfer Learning Methods and Discussion 

This section presents the overall performance results from the conducted experiments. 

It is worth mentioning that the pre-trained YOLOv4 with weights (yolov4.conv.137 

[25]) learned on the MS COCO [28] dataset was trained on three training datasets with 

different transfer learning methods to identify the transfer learning variant that provides 

the best solution for person detection in SAR scenes.  

In all cases, the YOLOv4 model was trained with a batch size of 64, a subdivision 

of 32, and iterations of 6000. The learning rate, momentum, and decay for the training 

process were set to values of 0.001, 0.949, 0.0005, and width and height to value 512. 

Before training, the parameters of the original model should be changed and adapted 

to our domain. The first step is to change the number of classes from 80, which 

corresponds to the number of MS COCO classes, to 1 class, a person in this experiment. 

After defining the class size, each Conv filter must be set to 18 as defined in (1), where 

the class corresponds to the number of classes (class = 1 in our case). 

 x filters = (classes + 5) x 3 (1) 

The impact of applying each of the transfer learning methods in training the detection 

model on the detectors' results in search and rescue operations is given below. 

4.1 Fine-tuning the YOLOv4 model to the target domain 

In the network-based deep transfer learning, the pre-trained YOLOv4 model trained on 

the COCO source domain was fine-tuned to the target domain: SARD, VisDrone, or 

Corr-SARD dataset. The sketch of network-based deep transfer learning is shown in 

Fig. 2. 



 

Fig. 2. A network-based deep transfer learning: the first network was trained in the source domain 

(in our case MS COCO), and then the pre-trained network was fine-tuned on the target domain 

(SARD dataset). 

For a more straightforward presentation of the results, the model trained on the 

SARD training dataset was designated as the SARD model. The model labeled COCO 

refers to the pre-trained model on the MS COCO dataset. 

Table 1. shows the results of person detection on SARD images concerning the AP 

metric with the original YOLOv4 model and the YOLOv4 model that was further 

trained on SARD images. The results show a significant improvement in AP (Imp 37,9) 

and Ap50 and AP75 metrics of the detection results after fine-tuning the model to the 

SARD dataset. 

Table 1. Results of YOLOv4 models on SARD test dataset in case of network-based deep 

transfer learning 

Model AP AP50 AP75 Imp 

COCO 23.4 40.2 25.3  

SARD 61.3 95.7 71.7 37.9 



4.2 Instances-based deep transfer learning with SARD, Corr-SARD, and 

VisDrone datasets 

After we applied the network-based transfer learning, we applied several instance-

based deep transfer learning to train further the YOLOv4 model, including a series of 

sets (VisDrone and Corr-SARD and SARD). 

Using the VisDrone set, we selected only those instances from that set relevant to 

our target domain, i.e., those that contained a person. In the VisDrone training set that 

we used, there is approximately the same number of images as in the SARD training 

set, but in the VisDrone set, there are 25,876 objects more than in the SARD dataset 

that is 29,797 marked persons in VisDrone and 3,921 marked persons in SARD dataset.  

In the first case of instance-based transfer learning, the original model was trained 

first on a selected part of the VisDrone dataset and then fine-tuned on the SARD 

training dataset (V+S model). The sketch of instances-based deep transfer learning with 

VisDrone and SARD dataset is shown in Fig. 3. 

 

Fig. 3. Instance-based deep transfer learning. We selected only images relevant to our target 

domain and trained the model with it from the source domain. In the second step, the model was 

trained on the SARD dataset. 

According to the results presented in Table 2, additional model training on the 

VisDrone set (model V+S) did not affect the detection results obtained on the SARD 

model. However, it improved the results compared to the original model (Imp 37,9). 

Training on the Corr-SARD training dataset contributed to a slight improvement in 

detection results concerning the SARD model and significant AP improvement to the 

original model (Fig. 4). 

Also, the results show that transfer learning is not commutative and that the order of 

the sets used to train the model affects the detection results. The best results are 

achieved when the model is fine-tuned on the dataset on whose examples it will be 

tested, so the V + S model achieves significantly better results than the S + V model. 

We also tested instance-based deep transfer learning using three datasets so that the 

original model was fine-tuned on the SARD training set after training on VisDrone, and 

the Corr-SARD datasets (V+C+S model). 



Table 2. Results of YOLOv4 models on SARD test set to build with instance-based transfer 

learning 

Model AP AP50 AP75 Imp 

S + V 22.8 41.7 23.7 -0.6 

V + S 61.3 95.8 70.6 37.9 

V + C + S 62.0 95.9 71.9 38.6 

 

Table 3. shows the individual detection results on the SARD test set obtained when 

the original model was additionally trained on the VisDrone and Corr-SARD sets. For 

an easier results notation, a model trained on the VisDrone dataset is designated as 

VisDrone, and the model trained on the Corr-SARD as Corr-SARD. 

 

Fig. 4. Using Corr-SARD dataset for transfer learning. After training on the SARD dataset, the 

model was re-train with the same images with added effect. 

The results are interesting and show that fine-tuning the original model to the 

VisDrone set even lowered the detection results even though the original COCO dataset 

does not include shots of people taken by the drone. The VisDrone set includes them 

just like the target SARD test set, but in urban areas. 

The use of the synthetic Corr-SARD set contributed to improved person detection 

outcomes in the SARD test set. 

Table 3. Results of YOLOv4 models on SARD test dataset after learning on the VisDrone set 

and Corr-SARD set 

Model AP AP50 AP75 Imp 

VisDrone 18.9 33.2 20.5 -4.5 

Corr-SARD 54.9 90.5 61.9 31.5 



4.3 Mapping-based deep transfer learning with images from SARD, Corr-

SARD, and VisDrone datasets 

In mapping-based deep transfer learning, several new sets were made for training the 

model as a union of images from the VisDrone, SARD, and Corr-SARD training sets. 

These are the SV sets created as a union of images from the SARD training set and 

VisDrone set, the SC model created by merging images from the SARD training set 

and Corr-SARD, and the SVC set created as a union of images from all three sets. A 

sketch of mapping-based deep transfer learning is shown in Fig. 5.  

The results in Table 4. show that transfer learning on newly created sets (SV, SC, 

SCV) significantly contributed to the improvement of the detection result concerning 

the original model with a relatively high AP score achieved: for SC model 59.4%, SV 

55.4%, and SVC 56.4%. The AP increase after transfer learning the model on new sets 

is 32 to 36 percent higher than with the original model (Imp column in Table 4.).  

However, it can be noticed that the results of the model trained on the newly created 

sets SV, SC, SCV are comparable but still slightly lower than the case when the model 

was fine-tuned only on the training data from the target set (model SARD). 

Table 4. Results of YOLOv4 model on SARD test set to build with mapping-based transfer 

learning methods 

Model AP AP50 AP75 Imp 

SV 55.4 92.5 60.8 32.0 

SC 59.4 94.7 67.4 36.0 

SVC 56.4 93.6 63.1 33.0 

 

From the obtained results, it can be concluded that in the case of deep transfer 

learning based on mapping, relatively good AP results were achieved, but that results 

are still worse compared to deep transfer learning based on instances and network 

transfers. Overall, the best AP score of 62.0% was achieved with the V + C + S model, 

and immediately afterward, with the AP 61.3%, a SARD model was fine-tuned only on 

the SARD training set. 



 

Fig. 5. Mapping-based deep transfer learning. Images from the target SARD dataset are mapped 

with images from the VisDrone and Corr-SARD datasets. 

Additionally, to evaluate the performance of the SV, SC, SCV models built with 

mapping-based transfer learning on the appropriate test sets, additional testing of the 

models was done on the test sets generated in the same way as SV, SC, SCV training 

sets but from the corresponding test sets. 

Table 5. Results of YOLOv4 models build with mapping-based transfer learning on 

appropriate test sets 

Model Test set AP AP50 AP75 

SV SV test 29.7 61.7 24.6 

SC SC test 55.8 91.6 61.7 

SVC SVC test 31.7 64.4 27.9 

 

The obtained results of the models obtained with the mapping-based transfer 

learning tested on the testing part of SV, SC, SCV sets are shown in Table 5 and have 

worse results than when tested only at the set SARD test set.  

The SC model achieved a minor difference in performance on the SC test set, 

comparing the SARD test set's detection results. This was expected because the Corr-

SARD set images included in the SC test set are those from the SARD set only with the 

added effects of bad weather. 

5. Conclusions 

In this paper, transfer learning approaches to improve person detection on drone images 

for the SAR mission were examined. We have fine-tuned the YOLOv4 model using 



different transfer learning methods on three datasets: a tailor-made SARD set for SARD 

missions, a VisDrone drone-recorded dataset in urban places, and a Corr-SARD dataset 

with synthetically added weather effects on SARD images. 

We compared and discussed the impact of the transfer learning methods used in 

YOLOv4 model training on detection results. Testing was performed on the target 

dataset SARD and the newly created datasets SV, SC, and SVC, created by merging 

the initial sets. 

The results show that the best detection results are achieved on the target SARD 

domain using network-based transfer learning when the set on which the model is fine-

tuned is equally distributed as the set on which the model is tested. The best results 

were achieved by applying the network transfer learning method, which transmits 

features obtained on large data sets, and the instance-based transfer learning method, in 

which the model is trained on images of the domain corresponding to the images on 

which the model will be tested. The use of synthetic image instances further improved 

the performance of the model. 

From the results, we also see that the worst results were obtained when the datasets 

were merged because, in that case, the model could not fully adapt to the data of interest. 

However, this way, by increasing the learning data, a more general model can be 

achieved. It has been shown that when training models with multiple datasets, it is not 

insignificant whether we train with all images simultaneously or individually on each 

set and the sets' order during training. 

For future work, we plan to explore the impact of different transfer learning methods 

on various application domains and determine the key characteristics of learning 

datasets that positively impact model performance. Also, we are interested in further 

exploring different network strategies for selecting, merging, and changing network 

layers to improve detection results. 
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