

27HSKIKI VELI LOŠINJ 2021

27th CROATIAN MEETING OF CHEMISTS AND CHEMICAL ENGINEERS

WITH INTERNATIONAL PARTICIPATION • 5th SYMPOSIUM "VLADIMIR PRELOG"
5-8 OCTOBER 2021 • VELI LOŠINJ, HOTEL PUNTA, CROATIA

BOOK OF ABSTRACTS

27th Croatian Meeting of Chemists and Chemical Engineers

with international participation

5th Symposium Vladimir Prelog

5 – 8 October 2021 Veli Lošinj, Vitality Hotel Punta, Croatia

BOOK OF ABSTRACTS

SCIENTIFIC AND ORGANISING COMMITTEE

Dean Marković, Chair, University of Rijeka

Ernest Meštrović, Co-chair, Xellia d.o.o.

Vesna Tomašić, *Co-chair*, Faculty of Chemical Engineering and Technology, University of Zagreb

Senka Djaković, *secretary*, Faculty of Food Technology and Biotechnology, University of Zagreb

Nikola Bregović, Faculty of Science, University of Zagreb

Zrinka Buhin Šturlić, Medic d.o.o.

Igor Dejanović, Faculty of Chemical Engineering and Technology, University of Zagreb

Stjepan Džalto, Hidroplan d.o.o.

Zvjezdana Findrik Blažević, Faculty of Chemical Engineering and Technology, University of Zagreb

Vesna Gabelica Marković, Faculty of Chemical Engineering and Technology, University of Zagreb

Nenad Judaš, Faculty of Science, University of Zagreb
Olgica Martinis, Education and Teacher Training Agency
Danijel Namjesnik, Faculty of Science, University of
Zagreb

Jasna Prlić Kardum, Faculty of Chemical Engineering and Technology, University of Zagreb

Silvana Raić Malić, Faculty of Chemical Engineering and Technology, University of Zagreb

Marko Rogošić, Faculty of Chemical Engineering and Technology, University of Zagreb

Marin Roje, Ruđer Bošković Institute, Zagreb

Aleksandra Sander, Faculty of Chemical Engineering and Technology, University of Zagreb

Vladislav Tomišić, Faculty of Science, University of Zagreb

Andrea Usenik, Faculty of Science, University of Zagreb **Mario Vazdar**, Ruđer Bošković Institute, Zagreb

INTERNATIONAL SCIENTIFIC COMMITTEE

Jurica Bauer, Maastricht University, Maastricht, the Netherlands

David Bogle, University College London, London, UK

Paweł Dydio, Laboratory of Complex Systems in Synthesis & Catalysis (CosyCAT), Institute of Science and Supramolecular Engineering (ISIS), University of Strasbourg & CNRS, Strasbourg Cedex, France

Tomislav Friščić, McGill University, Montreal, Canada

Janez Plavec, Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia

Giovanna Speranza, Department of Chemistry, University of Milan, Milan, Italy

LOCAL ORGANISING COMMITTEE

Gabriela Ambrožić, Maria Kolympadi Markovic, Sandra Kraljević Pavelić, Tomislav Pavlešić, Alma Ramić

IMPRESSUM

ORGANIZERS

Croatian Chemical Society
Croatian Society of Chemical Engineers

PUBLISHED BY

Croatian Chemical Society

EDITORS

Dean Marković, Ernest Meštrović, Danijel Namjesnik, Vesna Tomašić

DESIGN & LAYOUT

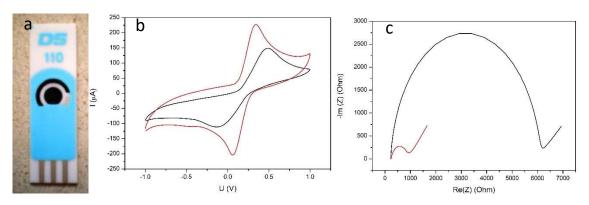
Danijel Namjesnik & Andrea Usenik

ISSN: 2757-0754 (Online)

VENUE

Veli Lošinj, Vitality Hotel Punta, Croatia

https://www.losinj-hotels.com/hr/hoteli-i-vile/hotel-punta/


ANODIC PRETREATMENT OF CARBON GRAPHENE PASTE MODIFIED SCREEN PRINTED ELECTRODE FOR ENHANCING THE ELECTROCHEMICAL SENSING CHARACTERISTICS

Pavo Živković, Martina Medvidović Kosanović, Aleksandar Sečenji*

Department of Chemistry, J. J. Strossmayer University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia

* szealex@kemija.unios.hr

Graphene is emerging as a material with extraordinary physical and chemical properties. Due to its electrochemical properties, it offers vast potential applicability as an effective electrode material. With anodic pretreatment, it is possible to enhance the electrochemical sensing properties of graphene-modified electrodes. In the present study, electrochemical sensing properties of graphene-modified screen printed electrodes are investigated before and after anodic pretreatment of the electrode. The prepared electrode is electrochemically characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The electrode surface is investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. The heterogeneous electron transfer rate and capacitance is calculated from obtained cyclic voltammograms and electrochemical impedance spectroscopy respectively. Both values are compared before and after anodic pretreatment.

Figure 1. a) Image of used screen printed electrode, b) cyclic voltammograms, and c) Nyquist plots obtained with screen printed electrode before anodic pretreatment (—) and after anodic pretreatment (—).

REFERENCES

[1] D. A. C. Brownson, C. W. Foster, C.E. Banks, Analyst 2012, 137, 1815.-1823.