Pregled bibliografske jedinice broj: 1159481
Estimates for the p-angular distance and characterizations of inner product spaces
Estimates for the p-angular distance and characterizations of inner product spaces // International Conference on Analysis and its Applications 2021 (ICAA 2021), Kathmandu University, Dhulikhel, Nepal
Dhulikhel, Nepal, 2021. str. 1-1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1159481 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimates for the p-angular distance and characterizations of inner product spaces
Autori
Krnić, Mario ; Minculete, Nicusor
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
International Conference on Analysis and its Applications 2021 (ICAA 2021), Kathmandu University, Dhulikhel, Nepal
Mjesto i datum
Dhulikhel, Nepal, 09.04.2021. - 11.04.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
inner product space, normed space, $p$-angular distance, characterization of inner product space, the Hile inequality
Sažetak
In this talk we derive new mutual bounds for $p$-angular distance $\alpha_p[x, y]=\big\Vert \Vert x\Vert^{; ; ; p-1}; ; ; x- \Vert y\Vert^{; ; ; p-1}; ; ; y\big\Vert$, in a normed linear space $X$. We show that our estimates are more accurate than the previously known upper bounds established by Dragomir, Hile and Maligranda. Next, we give several characterizations of inner product spaces with regard to the $p$-angular distance. In particular, we prove that if $|p|\geq |q|$, $p\neq q$, then $X$ is an inner product space if and only if for every $x, y\in X\setminus \{; ; ; 0\}; ; ; $, $${; ; ; \alpha_p[x, y]}; ; ; \geq \frac{; ; ; {; ; ; \|x\|^{; ; ; p}; ; ; +\|y\|^{; ; ; p}; ; ; }; ; ; }; ; ; {; ; ; \|x\|^{; ; ; q}; ; ; +\|y\|^{; ; ; q}; ; ; }; ; ; \alpha_q[x, y].
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mario Krnić
(autor)