Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1159479

L^p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition


Al Baba, Hind; Ghosh, Amrita; Muha, Boris; Nečasová, Šárka
L^p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition // Journal of Elliptic and Parabolic Equations, 7 (2021), 2; 439-489 doi:10.1007/s41808-021-00134-9 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1159479 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
L^p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition

Autori
Al Baba, Hind ; Ghosh, Amrita ; Muha, Boris ; Nečasová, Šárka

Izvornik
Journal of Elliptic and Parabolic Equations (2296-9020) 7 (2021), 2; 439-489

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
fluid-rigid body system ; strong solutions ; maximal regularity ; non-Newtonian fluids

Sažetak
We study a fluid-structure interaction problem describing movement of a rigid body inside a bounded domain filled by a viscous fluid. The fluid is modelled by the generalized incompressible Naiver–Stokes equations which include cases of Newtonian and non-Newtonian fluids. The fluid and the rigid body are coupled via the Navier slip boundary conditions and balance of forces at the fluid-rigid body interface. Our analysis also includes the case of the nonlinear slip condition. The main results assert the existence of strong solutions, in an Lp−Lq setting, globally in time, for small data in the Newtonian case, while existence of strong solutions in Lp-spaces, locally in time, is obtained for non-Newtonian case. The proof for the Newtonian fluid essentially uses the maximal regularity property of the associated linear system which is obtained by proving the R- sectoriality of the corresponding operator. The existence and regularity result for the general non-Newtonian fluid-solid system then relies upon the previous case. Moreover, we also prove the exponential stability of the system in the Newtonian case.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-3706 - Analiza problema interakcije fluida i strukture i primjene (FSIApp) (Muha, Boris, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Boris Muha (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com doi.org

Citiraj ovu publikaciju:

Al Baba, Hind; Ghosh, Amrita; Muha, Boris; Nečasová, Šárka
L^p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition // Journal of Elliptic and Parabolic Equations, 7 (2021), 2; 439-489 doi:10.1007/s41808-021-00134-9 (međunarodna recenzija, članak, znanstveni)
Al Baba, H., Ghosh, A., Muha, B. & Nečasová, Š. (2021) L^p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition. Journal of Elliptic and Parabolic Equations, 7 (2), 439-489 doi:10.1007/s41808-021-00134-9.
@article{article, author = {Al Baba, Hind and Ghosh, Amrita and Muha, Boris and Ne\v{c}asov\'{a}, \v{S}\'{a}rka}, year = {2021}, pages = {439-489}, DOI = {10.1007/s41808-021-00134-9}, keywords = {fluid-rigid body system, strong solutions, maximal regularity, non-Newtonian fluids}, journal = {Journal of Elliptic and Parabolic Equations}, doi = {10.1007/s41808-021-00134-9}, volume = {7}, number = {2}, issn = {2296-9020}, title = {L\^{}p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition}, keyword = {fluid-rigid body system, strong solutions, maximal regularity, non-Newtonian fluids} }
@article{article, author = {Al Baba, Hind and Ghosh, Amrita and Muha, Boris and Ne\v{c}asov\'{a}, \v{S}\'{a}rka}, year = {2021}, pages = {439-489}, DOI = {10.1007/s41808-021-00134-9}, keywords = {fluid-rigid body system, strong solutions, maximal regularity, non-Newtonian fluids}, journal = {Journal of Elliptic and Parabolic Equations}, doi = {10.1007/s41808-021-00134-9}, volume = {7}, number = {2}, issn = {2296-9020}, title = {L\^{}p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition}, keyword = {fluid-rigid body system, strong solutions, maximal regularity, non-Newtonian fluids} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font