Pregled bibliografske jedinice broj: 1159479
L^p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition
L^p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition // Journal of Elliptic and Parabolic Equations, 7 (2021), 2; 439-489 doi:10.1007/s41808-021-00134-9 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1159479 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
L^p-strong solution to fluid-rigid body interaction
system with Navier slip boundary condition
Autori
Al Baba, Hind ; Ghosh, Amrita ; Muha, Boris ; Nečasová, Šárka
Izvornik
Journal of Elliptic and Parabolic Equations (2296-9020) 7
(2021), 2;
439-489
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
fluid-rigid body system ; strong solutions ; maximal regularity ; non-Newtonian fluids
Sažetak
We study a fluid-structure interaction problem describing movement of a rigid body inside a bounded domain filled by a viscous fluid. The fluid is modelled by the generalized incompressible Naiver–Stokes equations which include cases of Newtonian and non-Newtonian fluids. The fluid and the rigid body are coupled via the Navier slip boundary conditions and balance of forces at the fluid-rigid body interface. Our analysis also includes the case of the nonlinear slip condition. The main results assert the existence of strong solutions, in an Lp−Lq setting, globally in time, for small data in the Newtonian case, while existence of strong solutions in Lp-spaces, locally in time, is obtained for non-Newtonian case. The proof for the Newtonian fluid essentially uses the maximal regularity property of the associated linear system which is obtained by proving the R- sectoriality of the corresponding operator. The existence and regularity result for the general non-Newtonian fluid-solid system then relies upon the previous case. Moreover, we also prove the exponential stability of the system in the Newtonian case.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-3706 - Analiza problema interakcije fluida i strukture i primjene (FSIApp) (Muha, Boris, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Boris Muha (autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus