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Abstract—White-balancing is an important part of the image
processing pipeline and is used in many computer vision applica-
tions. It removes the chromatic influence of the illumination on
objects in the scene. White balancing is important in tasks such
as object detection and object tracking. This problem is tackled
in a myriad of ways, but most methods use the assumption that
images contain only one dominant uniform illuminant. In recent
years, neural networks have been used to create state-of-the-art
methods for single illuminant white-balancing, but the problem of
multi-illuminant white-balancing has been largely ignored. The
main reason for this is the lack of multi-illuminant datasets.
In this paper, we introduce a convolutional neural network for
multi-illuminant (sun and shadow) illumination estimation. For
the training and testing of the created model over 100 outdoor
daytime images were taken using the Canon EOS 550D camera.
We show that the model outperforms existing statistics-based
methods on the test data.

Index Terms—multi-illuminant estimation, multi-illuminant
dataset, color constancy, convolutional neural networks.

I. INTRODUCTION

All modern cameras use methods that perform white-
balancing. There are many different methods, but they all at-
tempt to emulate the human visual system’s ability to perceive
an object’s intrinsic color even when the color is altered by a
chromatic illuminant, also known as color constancy.

In recent years, the best-performing methods for illuminant
estimation have been convolutional neural networks (CNN)
[15]. The problem with these CNN models is that they were
designed, trained, and tested on images that have only one
dominant illuminant. The assumption that there is only a
single illuminant is often violated. For images with multiple
illuminants, these methods produce erroneous illumination
estimations, resulting in images that look unnatural.

While there are methods [3, 21] that perform multi-
illuminant estimation using neural networks, they mostly use
artificially colored images. This is because there are no large
datasets of labeled multi-illuminant images.

The main challenge in the creation of a larger multi-
illuminant dataset is the need for correct image labeling. An
example of labeling can be seen in [8], where for a single
dataset there are three different ground truths. A method’s
accuracy greatly depends on the ground truth used. The dataset
in [8] contains images with only one illuminant and the prob-
lem is only exacerbated when more illuminants are present.
When there are more illuminants, determining the number of
illuminants can also be a problem. Scene selection is important
since a scene could have multiple illuminants where the human
eye sees no visible difference. Some examples are streets at
nighttime and hallways with multiple light bulbs. The camera
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picks up the subtle differences between these illuminants
causing color correction to look unnatural. The simplest two
illuminant images are outdoor daytime images with clear
skies. In such situations, the delineation between illuminants is
easily recognizable and there are rarely additional illuminants
present.

In this paper, we created over 100 real-world outdoor images
that contain two illuminants. The convolutional neural network
that is trained on the images is based on [15] that performs
single-illuminant estimation.

The paper is divided into sections as follows. Section
IT presents a color constancy problem formulation. In this
section an overview of methods for illumination estimation
is presented. Section III presents existing datasets and gives
an overview of how the new images were collected. Section
IV presents the model. Section V shows results obtained on
the dataset using existing methods. Finally, in Section VI the
conclusion and future directions are presented.

II. COLOR CONSTANCY OVERVIEW
A. Problem formulation

To achieve color constancy the chromatic effect of illumina-
tion needs to be removed. This is achieved in two steps. The
first step is the estimation of the image illuminant. The second
step is the color correction of the image using the estimated
illuminant.

Digital images are constructed from pixels. A pixel contains
three values the red, green, and blue color intensity in it’s
location f = (fr, fg, f»). A popular image formation model
is the Lambertian model [11].

J. = / (VS (x, Npe(N) dA (1)

A single pixel’s value depends on the color of the il-
luminant I(\), surface reflectance S(x,\), and the camera
sensitivity function for each of the three values p(\) =
(pr(A), pg(A), po(X)). X represents the spatial coordinates and
A represents the light wavelength.

For the second step of color correction, the von Kriss model
[23] is commonly used. It uses a diagonal matrix, as it was
shown that a diagonal matrix is sufficient [9] for image color
correction. The model assumes that the sensor responses are
independent.

1€ = Ao« 2)
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Fig. 1. Example images from the dataset. For display purposes the images were tone mapped.

1€ is the image under the canonical illuminant, A*¢ is the
von Kriss diagonal matrix, and I“ is the image under the
unknown illuminant. The diagonal matrix can be expressed
as:

—- 0 0
Ly
Ly
Au,c — O ﬁ 0 (3)
g Ie
o o 2
Ly

where LY, L;, Ly are the red, green, and blue values of
the unknown illuminant and L¢, L;, Li are the red, green,
and blue values of the canonical illuminant. The canonical
illuminant is the white light or an L value of (1,1,1)7

B. Related work

[lumination estimation methods can be split into two
groups: statistics-based and learning-based.

Statistics-based methods are simpler and rely on low-level
statistical information present in an image. An example of
statistics-based methods is the White-Patch[18] method. It
assumes that the color channel maximum response is caused
by perfect reflectance. The illuminant is extracted by taking
the maximum value of each color channel. Another statistics-
based method is Grey-World[5]. It assumes that the average
reflectance of a scene is achromatic and any divergence is
caused by the illuminant. The illuminant is extracted by
computing the average value of each color channel.

Special Sessions
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The assumptions from these methods are often violated
resulting in unnaturally looking images. White-Patch does not
work well with very bright images where camera sensors are
over-saturated and the maximum value cannot be extracted.
Grey-world does not work well with images that have a few
surfaces since the average color in the image becomes the
color of the largest surface.

These two methods are part of a larger framework called
Grey-Edge[22]. Here the assumption is that the average edge
difference in a scene is achromatic.

( / " feo(
Cooxn
These methods are meant for single illuminant estimation,
but some methods use them for multi-illuminant estimation.
They achieve this by splitting the image into small patches.
They use the assumption that these small patches contain only
one illuminant.

In [12], to segment the image they used several different
methods: grid-based, segmentation-based, and keypoint-based
segmentation. After the image has been segmented, a method
from the Grey-Edge framework is used to extract the illumi-
nant for each patch. The global estimations are created by
grouping the local estimations using any clustering algorithm.

In [4], they separate the image into a set of superpixels based
on the color value of the pixels. For each superpixel, a Grey-
Edge framework method is used to estimate the illuminant.
To combine the local estimation, they use several different

dx) L= e “
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methods. One is Gradient tree boosting [10] and the other is
Random Forest regression [13].

In [2], the image is segmented into patches using a uniform
grid. They also tried segmenting the image into superpixels,
but they opted for uniform-grid since the results were com-
parable and uniform-grid is simpler. The illuminant of each
patch is estimated using a Grey-Edge framework method. To
obtain the global illumination estimations they use Random
conditional fields.

The other more recent group of methods are the learning-
based methods. It can be seen [15, 24, 1] that these methods
perform far better than the statistics-based methods, with the
downside being that these methods are more complex than the
statistics-based methods.

In [15], the authors used and repurposed two neural net-
works created for image classification on ImageNet[7]. They
used AlexNet[17] and SqueezeNet[16] pre-trained in Ima-
geNet. These models were repurposed by removing the final
Fully-connected layers from the models and replacing them
with Convolutional layers and a Confidence-weighted pooling
layer. The final Convolutional layer produces a four-channel
output. The first three channels represent the local illumination
estimations, while the final channel represents the confidence
mask of the local illuminant estimations. This four-channel
output is then fed into the Confidence-weighted pooling layer.
This layer multiplies the confidence mask with the illumination
estimations, sums all the estimations into a global illumination
estimation, and finally normalizes the estimation to produce
the model output.

In [1], they transform the problem by reducing the problem
into a spatial localization task. To transform the problem they
use the fast Fourier transformation to operate in the frequency
domain. They perform convolutions over histograms in the
log-chromatic color space. This results in an efficient method
that performs 250—3000 times faster than other learning-based
methods and a method that works in real-time on a mobile
device.

There are many more methods that are used for single
illumination estimation, but there are a few methods that were
created for multi-illuminant estimation. They also perform
illumination estimation by splitting the image into patches, es-
timating local illumination, and clustering the local estimation
into global illumination estimations.

In [3], they used a simple neural network with 2 con-
volutional and 2 fully connected layers. To determine the
number of illuminants in a scene they normalize the local
illuminant estimations and employ a 2D kernel density esti-
mation (KDE). The KDE determines whether there are one or
more illuminants in the scene. If there is only one illuminant
they perform support vector regression [6] to get a global
illumination estimation. If there are multiple illuminants, the
patch estimations are combined into an illumination mask that
is then compared to the ground truth illumination mask.

In [21], to estimate an illuminant the authors use two
different neural networks: HypNet and SelNet. The HypNet
is the network that performs patch illumination estimation

Special Sessions
Color Vision and Processing: Where Are We At?

Online/Zagreb, Croatia

but unlike other approaches, it has two separate predictions
for the patch illumination. The authors argue that in such an
architecture each prediction specializes in a different type of
patch (e.g. bright regions or textured regions). The SelNet
model’s job is to select the HypNet prediction that more
accurately estimates the patch illuminant.

The problem with the patch-based approach is that some
patches do not have enough useful information for accurate
illumination estimation. For example, a patch that only shows
a yellow wall. In this situation, there is not enough information
to deduce whether the wall is yellow or the wall is white and is
illuminated by a yellow illuminant. For this reason, the model
in this paper performs global illumination estimation over the
entire image.

III. DATASET

The problem with neural networks is that they need a
large amount of training data. There are some multi-illuminant
datasets available, but none of them have enough data for
neural network training.

In [4], a multi-illuminant dataset is presented. The problem
is that this dataset only contains 36 multi-illuminant images
and all of the images were taken under laboratory conditions.
The Multiple Light Sources dataset [12] has more images. The
dataset contains 59 images taken under laboratory conditions
and 9 real-world images.

The Multiple-Illuminant Multi-Object dataset [2] has 60
images taken under laboratory conditions and 20 real-world
images. This paper also introduces a way to automatically
label the segmentation mask of an image. They do this by
taking three images of the scenes, one with both illuminants
and two with only one of the illuminants. For this to work,
you need the ability to turn off the illuminants, which is often
not possible.

These datasets have less than 100 images and the number of
real-world images is even smaller. The number of real-world
images is far too small for effective neural network training.
While images taken under laboratory conditions are good they
cannot perfectly emulate all the situations that can arise in
real-world situations.

Therefore, for the training and testing of the model, we cre-
ated over 100 real-world images. The images contain outdoor
daytime scenes, where one of the illuminants is the sun and
the other is the ambient light of the sky present in the shadows.

These images were taken in the northwest region of Croatia.

The illuminants in each image were calculated using Spy-
derCubes, which can be seen in Figure 2. Each SpyderCube
has four faces: two grey and two white, with a grey and white
face sharing a flat surface.

Illuminants were extracted by calculating the average value
from a grey face. One SpyderCube was placed under direct
sunlight and the other was placed in a shadow.

To select which grey face will be used as ground truth
the following process was used. Firstly, an illuminant was
extracted from each of the two white and two grey faces. Then
the angle between the grey and white face of each surface
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Fig. 2. SpyderCube used for illumination extraction

was calculated using cosine similarity. The grey face with the
smaller angle was chosen as the ground truth. If only one of
the sides of the cube was under direct sunlight that side is
chosen for the sunlight ground truth.

To ensure there are two illuminants the angle between the
sunlight and shadow illuminant is examined. In [14] it is stated
that humans have difficulties distinguishing illuminants where
the angle is less than 2°. The authors of [14] state those
findings are not conclusive, so images with an angle of of
1° were also used.

To use images for training and testing, the following pre-
processing steps were performed. Firstly, the black level or the
level of brightness of the darkest pixels has to be subtracted
from the whole image. The camera used for dataset creation is
the Canon EOS 550D and it has a black level value of 2048.
The image regions that contain SpyderCubes were blacked out.
This was done to make it impossible for the model to simply
learn to find the SpyderCubes and extract the illuminant.
Finally, image pixels that have a response value that is greater
than or equal to m-2, where m is the maximum channel
response in an image, were set to 0. This was done to remove
the effect of oversaturated image pixels.

IV. PROPOSED MODEL

To evaluate the dataset and see how well neural networks
compare to statistics-based estimation methods, a convolu-
tional neural network was created. The used convolutional
neural network is based on the FC4 [15] model.

FC4 uses SqueezeNet [16] pre-trained on ImageNet [7] as
an image feature extractor, where the final few layers are
replaced by two randomly initialized convolutional layers. The
output from the final convolutional layer are the local illumi-
nation estimations. These local illumination estimations are
fed into a Confidence-weighted pooling layer also introduced
in [15]. This layer contains an attention mask that is used to
filter out local estimations the model deems too inaccurate for
estimation.

For multi-illuminant images, the model was modified to
have two outputs, one for each of the illuminants. This was
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Fig. 3. Illumination ground truth for each image

done by duplicating the randomly initialized convolutional
layers so that both illumination estimators use the same
feature extractor, but use different illumination estimation
feature masks. The process of taking an existing illumination
estimation model and modifying it to have two outputs could
have been done with any model, but FC4 [15] was used
because of the Confidence-weighted pooling layer.

In [15], this layer is used to train the model to ignore
regions of an image that do not contain enough information
for accurate illumination estimation. An example of such a
region is a single color wall. In multi-illuminant images,
regions where the illuminant is not present are not useful for
illumination estimation. Since the model has separate outputs
for sunlight and shadow, this layer is used to train the model
to also ignore the illuminant not associated with output.

This model was also selected because it performs illumina-
tion estimation over the entire image unlike [3] and [21].

The model was trained for 200 epochs with batch size of
28 on the Nvidia 2080Ti GPU and Ryzen 7 3700X CPU. The
AdamW [20] with weight decay Se-5 and a learning rate of
2e-4, was used as the optimizer. The mean squared error loss
function was used. The size of the input image is 227x227.
The training and valudation plot can be seen in Figure 4.

V. RESULTS

To evaluate the new dataset three different tests were per-
formed. In the first test regions in the shadows are estimated,
in the second test regions under direct sunlight are estimated,
and in the final test, both illuminants are estimated. For testing
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Fig. 4. Plot of model loss on train and validation datasets

TABLE I
COMPARISON OF RESULTS OBTAINED WHEN ONLY SHADOW
ILLUMINATION ERROR IS EXAMINED.

Method mean med. tri. 123;;2 \;;);‘Zt
do nothing 819 1815 18.19 17.15 19.22
gr;%g["sr]ld 1444 1531 1518 1025 17.13
(GGT’&“)’[";J“ 144 1525 1511 1034  17.06
g;i;‘;)f["i‘;h 1292 1381 136 81 1611
m’iéi‘)f;"l‘;c]h 1238 13.16 13.03 732 1574
(gggr;;[gfy'world 1412 1517 1493 941  17.05
(ggfgj;[g;]"y'world 1385 1505 1468 895 1693
g;grzd)?;grey'e‘ige 864 444 519 141 2289
(lgft’gzmgrey'edge 676 384 433 129 1739
?;;;;ﬁezrzfrey'edge 74 644 677 209 1469
(zgigﬁgrz](}rey'edge 664 55 532 181 1418
Proposed model 2.14 1.78 1.88  0.57 4.28

several Grey-edge framework variants as well as the proposed
CNN model were used.

To compare the results of the models the angular error
in degrees was used. The evaluation metrics used were the
standard metrics used by similar papers. The included metrics
are mean, median, trimean, best 25% mean, and worst 25%
mean.

L-L >
— 5)
(L] [2] L |2

When estimating using the Grey-edge framework the images
are divided into patches for local illuminant estimation. The
local estimations are then clustered into two illuminants using
k-means [19] clustering. To create patches a uniform grid was

Angular error = cos™! (
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TABLE I
COMPARISON OF RESULTS OBTAINED WHEN ONLY SUN ILLUMINATION
ERROR IS EXAMINED.

Method mean med.  tri. ;gtsyz ‘;(5){7?
do nothing 1766 17.67 1767 1740 _17.90
(C;f;)g-z“)’g]‘d 100 928 94 725 1395
(Céi&")“["sf]ld 1007 943 953 736 13.88
g?;;ﬁ?tgc]h 859 7.63 773 593 13.14
z’giljéi')lf?;h 83 723 762 585 1261
%;;;r;;[gfy‘wo“d 956 855 875 678 1396
zégfﬁrzi[g’zf]ey'world 933 828 85 657 137
(13s; gr;g 2C]irey-edge 599 38 409 126 14.54
(1 g;gﬁ;grey‘edge 571 38 402 121 1339
gggﬁ%ﬁrey'edge 492 352 375 167 1051
?gligﬂ;fz](}rey‘edge 497 357 372 171 106l
Proposed model 092 068 073 026 2.04
TABLE 1II

COMPARISON OF RESULTS OBTAINED WHEN BOTH ILLUMINATIONS ERROR
ARE EXAMINED.

Method mean med. tri. ]23 ; Z/E \;/;)‘ryz '
do nothing 1793 1781 1784 1726 1881
gr%zv)v[osf]ld 1222 126 1244 772 1651
(Céﬁx[osr]‘d 1224 1256 1239 786 1643
g;’iéez')lﬂ[’?;h 1075 1096 109 63 1546
z’gf‘l’iéi';[’?gc]h 1034 1001 1019 612  15.04
(gg;fg[g]ey'w"ﬂd 11.84 1235 1206 7.18 1642
(gg:g:;[gzr]ey-world 1159 11.89 11.73 699 1626
ggg’gfzf;‘égrey'edge 732 415 442 133 191
(lgz’zﬁ;gfey'edge 623 382 408 125 1555
?;;gﬁ;rz ]Grey‘edge 616 48 482 177 1328
(Zgiéﬁgrz]&ey'edge 58 415 431 175 1273
Proposed model 1.53 1.02 121 034 3.49

used. Patch sizes of (32,32) and (64,64) were used to see
how the patch size affects accuracy. Bigger patches were not
used since the assumption of a single illuminant in a patch is
violated in larger patches. It can bee seen in Tables I II III that
the patch size does not affect Grey-world [S] and White-patch
[18], but the other Grey-edge [22] methods see significant
improvement with the larger patch size. For the CNN model,
a 3-fold split was used so that the model could be properly
compared to the other methods since they do not need training
and can be tested on all the images.
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As the Tables I II IIT show the CNN approach outper-
forms all the Grey-edge methods. An interesting fact that
can be observed in Tables I II is that sunlight estimation
is significantly more accurate than the shadow illumination
estimation. This can be explained by the fact that the sunlight
illumination gamut is much smaller than the gamut of the
shadow illumination as can be seen in Figure 3.

VI. CONCLUSION

This paper presents a new multi-illuminant dataset and
the details of how the images were collected and annotated.
A convolutional neural network for illumination estimation
in outdoor daytime images is also presented. This model
outperforms statistics-based methods. The presetned work is
preliminary and in the future we hope to create a proper
dataset with a diverse set of images taken by multiple different
cameras.
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